Skip to main content
Log in

Estimating Cell Concentration in Three-Dimensional Engineered Tissues Using High Frequency Quantitative Ultrasound

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Histology and biochemical assays are standard techniques for estimating cell concentration in engineered tissues. However, these techniques are destructive and cannot be used for longitudinal monitoring of engineered tissues during fabrication processes. The goal of this study was to develop high-frequency quantitative ultrasound techniques to nondestructively estimate cell concentration in three-dimensional (3-D) engineered tissue constructs. High-frequency ultrasound backscatter measurements were obtained from cell-embedded, 3-D agarose hydrogels. Two broadband single-element transducers (center frequencies of 30 and 38 MHz) were employed over the frequency range of 13–47 MHz. Agarose gels with cell concentrations ranging from 1 × 104 to 1 × 106 cells mL−1 were investigated. The integrated backscatter coefficient (IBC), a quantitative ultrasound spectral parameter, was calculated and used to estimate cell concentration. Accuracy and precision of this technique were analyzed by calculating the percent error and coefficient of variation of cell concentration estimates. The IBC increased linearly with increasing cell concentration. Axial and lateral dimensions of regions of interest that resulted in errors of less than 20% were determined. Images of cell concentration estimates were employed to visualize quantitatively regional differences in cell concentrations. This ultrasound technique provides the capability to rapidly quantify cell concentration within 3-D tissue constructs noninvasively and nondestructively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aubry, A., and A. Derode. Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues. J. Acoust. Soc. Am. 129:225–233, 2011.

    Article  PubMed  Google Scholar 

  2. Bamber, J. C. Ultrasonic properties of tissues. In: Ultrasound in Medicine, edited by F. A. Duck, A. C. Baker, and H. C. Starritt. Bristol, UK: Institute of Physics Publishing, 1998, pp. 57–88.

    Google Scholar 

  3. Bendat, J. S., and A. G. Piersol. Random Data Analysis and Measurement Procedures. New York: Whiley, p. 93, 2000.

    Google Scholar 

  4. Brand, S., E. C. Weiss, R. M. Lemor, and M. C. Kolios. High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med. Biol. 34:1396–1407, 2008.

    Article  PubMed  Google Scholar 

  5. Couture, O. Ultrasound Echoes from Targeted Contrast Agents. Ph.D. Thesis, Graduate Department in Medical Biophysics, University of Toronto, Toronto, 2007.

  6. Fite, B. Z., M. Decaris, Y. Sun, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng. Part C 17:495–504, 2011.

    Article  CAS  Google Scholar 

  7. Franceschini, E., and R. Guillermin. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms. J. Acoust. Soc. Am. 132:3735–3747, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Garvin, K. A., D. C. Hocking, and D. Dalecki. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. Ultrasound Med Biol. 36:1919–1932, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ghoshal, G., M. L. Oelze, and W. D. O’Brien. Quantitative ultrasound history and successes. In: Quantitative Ultrasound in Soft Tissues, edited by J. Mamou, and M. L. Oelze. New York: Springer, 2013, pp. 21–42.

    Chapter  Google Scholar 

  10. Gudur, M., R. R. Rao, Y. S. Hsiao, A. W. Peterson, C. X. Deng, and J. P. Stegemann. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging. Tissue Eng. Part C 18:935–946, 2012.

    Article  CAS  Google Scholar 

  11. Guidance for Industry: Bioanalytical Method Validation. F. D. A. US Department of Health and Human Services, Center for Drug Evaluation and Research, Rockville, MD, 2001.

  12. Insana, M. F., and T. J. Hall. Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation. Ultrason. Imaging 12:245–267, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Insana, M. F., R. F. Wagner, D. G. Brown, and T. J. Hall. Describing small-scale structure in random media using pulse-echo ultrasound. J. Acoust. Soc. Am. 87:179–192, 1990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tissue Engineering. Advancing tissue science and engineering: a foundation for the future. A multi-agency strategic plan. Tissue Eng. 13:2825–2826, 2007.

    Article  Google Scholar 

  15. Katouzian, A., S. Sathyanarayana, B. Baseri, E. E. Konofagou, and S. G. Carlier. Challenges in atherosclerotic plaque characterization with intravascular ultrasound (IVUS): from data collection to classification. IEEE Trans. Inf. Technol. Biomed. 12:315–327, 2008.

    Article  PubMed  Google Scholar 

  16. Kemmerer, J. P., and M. L. Oelze. Quantitative ultrasound assessment of thermal therapy in liver. J. Acoust. Soc. Am. 129:2440, 2011.

    Article  Google Scholar 

  17. Kemmerer, J. P., and M. L. Oelze. Ultrasonic assessment of thermal therapy in rat liver. Ultrasound Med. Biol. 38:2130–2137, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kolios, M. C., G. J. Czarnota, M. Lee, J. W. Hunt, and M. D. Sherar. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med. Biol. 28:589–597, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Kreitz, S., G. Dohmen, S. Hasken, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Nondestructive method to evaluate the collagen content of fibrin-based tissue engineered structures via ultrasound. Tissue Eng. Part C 17:1021–1026, 2011.

    Article  CAS  Google Scholar 

  20. Leithem, S. M., R. J. Lavarello, W. D. O’Brien, and M. L. Oelze. Estimating concentration of ultrasound contrast agents with backscatter coefficients: experimental and theoretical aspects. J. Acoust. Soc. Am. 131:2295–2305, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Libgot-Calle, R., F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat. High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation. Ultrasound Med. Biol. 34:252–264, 2008.

    Article  PubMed  Google Scholar 

  22. Liu, W., and J. A. Zagzebski. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations. IEEE Trans. Ultrason. Ferroelectr. 57:340–352, 2010.

    Article  Google Scholar 

  23. Lizzi, F. L., M. Astor, E. J. Feleppa, M. Shao, and A. Kalisz. Statistical framework for ultrasonic spectral parameter imaging. Ultrasound Med. Biol. 23:1371–1382, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Lizzi, F. L., M. Astor, T. Liu, C. Deng, D. Coleman, and R. Silverman. Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int. J. Imaging Syst. Technol. 8:3–10, 1997.

    Article  Google Scholar 

  25. Lizzi, F. L., M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman. Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J. Acoust. Soc. Am. 73:1366–1373, 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Lizzi, F., M. Ostromogilsky, E. Feleppa, M. Rorke, and M. Yaremko. Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans. Ultrason. Ferroelectr. 33:319–329, 1986.

    Google Scholar 

  27. Machado, J. C., and F. S. Foster. Ultrasonic integrated backscatter coefficient profiling of human coronary arteries in vitro. IEEE Trans. Ultrason. Ferroelectr. 48:17–27, 2001.

    Article  CAS  Google Scholar 

  28. McCormick, M. M., E. L. Madsen, M. E. Deaner, and T. Varghese. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range. J. Acoust. Soc. Am. 130:737–743, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Oe, K., M. Miwa, K. Nagamune, Y. Sakai, S. Y. Lee, T. Niikura, T. Iwakura, T. Hasegawa, N. Shibanuma, Y. Hata, R. Kuroda, and M. Kurosaka. Nondestructive evaluation of cell numbers in bone marrow stromal cell/beta-tricalcium phosphate composites using ultrasound. Tissue Eng. Part C 16:347–353, 2010.

    Article  CAS  Google Scholar 

  30. Oelze, M. L., and W. D. O’Brien, Jr. Defining optimal axial and lateral resolution for estimating scatterer properties from volumes using ultrasound backscatter. J. Acoust. Soc. Am. 115:3226–3234, 2004.

    Article  PubMed  Google Scholar 

  31. Pancrazio, J. J., F. Wang, and C. A. Kelley. Enabling tools for tissue engineering. Biosens. Bioelectron. 22:2803–2811, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Pinkerton, J. M. M. The absorption of ultrasonic waves in liquids and its relation to molecular constitution. Proc. Phys. Soc. 62:129–141, 1949.

    Article  Google Scholar 

  33. Raju, B. I., and M. A. Srinivasan. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med. Biol. 27:1543–1556, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Raju, B. I., K. J. Swindells, S. Gonzalez, and M. A. Srinivasan. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med. Biol. 29:825–838, 2003.

    Article  PubMed  Google Scholar 

  35. Reid, J. M. Standard substitution methods for measuring ultrasonic scattering in tissues. In: Ultrasonic Scattering in Biological Tissues, edited by K. K. Shung, and G. A. Thieme. Boca Raton, FL: CRC Press, 1993, pp. 171–204.

    Google Scholar 

  36. Roberjot, V., S. L. Bridal, P. Laugier, and G. Berger. Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers. IEEE Trans. Ultrason. Ferroelectr. 43:970–978, 1996.

    Article  Google Scholar 

  37. Saha, R. K., E. Franceschini, and G. Cloutier. Assessment of accuracy of the structure-factor-size-estimator method in determining red blood cell aggregate size from ultrasound spectral backscatter coefficient. J. Acoust. Soc. Am. 129:2269–2277, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Saha, R. K., and M. C. Kolios. Effects of cell spatial organization and size distribution on ultrasound backscattering. IEEE Trans. Ultrason. Ferroelectr. 58:2118–2131, 2011.

    Article  Google Scholar 

  39. Solorio, L., B. M. Babin, R. B. Patel, J. Mach, N. Azar, and A. A. Exner. Noninvasive characterization of in situ forming implants using diagnostic ultrasound. J. Controlled Release 143:183–190, 2010.

    Article  CAS  Google Scholar 

  40. Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out. Burlington, MA: Elsevier Academic Press, 2004, pp. 243–269, 442–444.

  41. Taggart, L. R., R. E. Baddour, A. Giles, G. J. Czarnota, and M. C. Kolios. Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med. Biol. 33:389–401, 2007.

    Article  PubMed  Google Scholar 

  42. Vlad, R. M., S. Brand, A. Giles, M. C. Kolios, and G. J. Czarnota. Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models. Clin. Cancer Res. 15:2067–2075, 2009.

    Article  CAS  PubMed  Google Scholar 

  43. Waag, R. C., P. P. K. Lee, R. M. Lerner, L. P. Hunter, R. Gramiak, and E. A. Schenk. Angle scan and frequency-swept ultrasonic scattering characterization of tissue. In: Ultrasound in Medicine, edited by D. White, and E. A. Lyons. New York, NY: Plenum Press, 1978, pp. 563–565.

  44. Wagner, R. F., M. F. Insana, and D. G. Brown. Statistical properties of radiofrequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. Am. 4:910–922, 1987.

    Article  CAS  Google Scholar 

  45. Zagzebski, J. A., L. X. Yao, E. J. Boote, and Z. F. Lu. Quantitative backscatter imaging. In: Ultrasonic Scattering in Biological Tissues, edited by K. K. Shung, and G. A. Thieme. Boca Raton, FL: CRC Press, 1993, pp. 451–486.

    Google Scholar 

  46. Zhang, D., X. F. Gong, and S. G. Ye. Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics. J. Acoust. Soc. Am. 99:2397–2402, 1996.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sally Z. Child, M.S., and Stephen McAleavey, Ph.D. (University of Rochester) for technical assistance and helpful discussions. This work was supported, in part, by National Institutes of Health Grant EB008368.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Dalecki.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 671 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado, K.P., Helguera, M., Hocking, D.C. et al. Estimating Cell Concentration in Three-Dimensional Engineered Tissues Using High Frequency Quantitative Ultrasound. Ann Biomed Eng 42, 1292–1304 (2014). https://doi.org/10.1007/s10439-014-0994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0994-8

Keywords

Navigation