Skip to main content
Log in

The Impact of MRI-based Inflow for the Hemodynamic Evaluation of Aortic Coarctation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Aortic coarctation (CoA) accounting for 3–11% of congenital heart disease can be successfully treated. Long-term results, however, have revealed decreased life expectancy associated with abnormal hemodynamics. Accordingly, an assessment of hemodynamics is the key factor in treatment decisions and successful long-term results. In this study, 3D angiography whole heart (3DWH) and 4D phase-contrast magnetic resonance imaging (MRI) data were acquired. Geometries of the thoracic aorta with CoAs were reconstructed using ZIB-Amira software. X-ray angiograms were used to evaluate the post-treatment geometry. Computational fluid dynamics models in three patients were created to simulate pre- and post-treatment situations using the FLUENT program. The aim of the study was to investigate the impact of the inlet velocity profile (plug vs. MRI-based) with a focus on the peak systole pressure gradient and wall shear stress (WSS). Results show that helical flow at the aorta inlet can significantly affect the assessment of pressure drop and WSS. Simplified plug inlet velocity profiles significantly (p < 0.05) overestimate the pressure drop in pre- and post-treatment geometries and significantly (p < 0.05) underestimate surface-averaged WSS. We conclude that the use of the physiologically correct but time-expensive 4D MRI-based in vivo velocity profile in CFD studies may be an important step towards a patient-specific analysis of CoA hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CoA:

Aortic coarctation

MRI:

Magnetic resonance imaging

PC-MRI:

Phase contrast MRI

WH:

Whole heart

BA:

Brachiocephalic artery

LCCA:

Left common carotid artery

LSA:

Left subclavian artery

CFD:

Computational fluid dynamics

SD:

Degree of stenosis

H:

Helicity

WSS:

Wall shear stress

1D:

One-dimensional

3D:

Three-dimensional

4D:

Four-dimensional

References

  1. Arzani, A., P. Dyverfeldt, T. Ebbers, and S. C. Shadden. In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation. Ann. Biomed. Eng. 40(4):860–870, 2012.

    Article  PubMed  Google Scholar 

  2. Boissonnat, J. D., R. Chaine, P. Frey, G. Malandain, S. Salmon, L. Saltel, and M. Thiriet. From angiographies to computational flow in saccular aneurisms: the INRIA experience. Med. Image Anal. 9:133–143, 2005.

    Google Scholar 

  3. Cohen, M., V. Fuster, P. M. Steele, D. Driscoll, and D. C. McGoon. Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation 80:840–845, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Coogan, J. S., F. P. Chan, C. A. Taylor, and J. A. Feinstein. Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheterization Cardiovasc. Interv. 77:680–691, 2011.

    Article  Google Scholar 

  5. Frydrychowicz, A., A. Berger, A. Munoz del Rio, M. F. Russe, J. Bock, A. Harloff, and M. Markl. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur. Radiol. 22(5):1122–1130, 2012.

    Google Scholar 

  6. Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40(3):729–741, 2012.

    Article  PubMed  CAS  Google Scholar 

  7. Isaaz, K., J. Bruntz, A. Da Costa, D. Winninger, A. Cerisier, C. de Chillou, N. Sadoul, M. Lamaud, G. Ethevenot, and E. Aliot. Noninvasive quantitation of blood flow turbulence in patients with aortic valve disease using online digital computer analysis of Doppler velocity data. J. Am. Soc. Echocardiogr. 16:965–974, 2003.

    Article  PubMed  Google Scholar 

  8. Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2003.

    Article  PubMed  Google Scholar 

  9. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three- directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Kousera, C. A., N. B. Wood, W. A. Seed, R. Tprii, D. O’Regan, and X. Y. Xu. A numerical study of aortic flow stability and comparison with in vivo flow measurements. J. Biomech. Eng. 135(1):011003, 2013.

    Article  PubMed  CAS  Google Scholar 

  11. Krueger, J. J., P. Ewert, S. Yilmaz, D. Gelernter, B. Peters, K. Pietzner, A. Bornstedt, B. Schnackenburg, H. Abdul-Khaliq, E. Fleck, E. Nagel, F. Berger, and T. Kuehne. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta. Circulation 113:1093–1100, 2006.

    Article  PubMed  Google Scholar 

  12. LaDisa, J. F., C. A. Figueroa, I. E. Vignon-Clementel, H. J. Kim, N. Xiao, L. M. Ellwein, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Computational simulations for aortic coarctation: representative results from a sampling of patients. J. Biomech. Eng. 133:091008-1-9, 2011.

    Google Scholar 

  13. LaDisa, J. F., C. A. Taylor, and J. A. Feinstein. Aortic coarctation: recent developments in experimental and computational methods to assess treatments for this simple condition. Prog. Pediatr. Cardiol. 30(1):45–49, 2010.

    Article  PubMed  Google Scholar 

  14. Lantz, J., and M. Karlsson. Large eddy simulation of LDL surface concentration in a subject specific human aorta. J. Biomech. 45:537–542, 2012.

    Article  PubMed  Google Scholar 

  15. Lantz, J., J. Renner, and M. Karlsson. Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction. Int. J. Appl. Mech. 3(4):759–778, 2011.

    Article  Google Scholar 

  16. Lindinger, A., G. Schwedler, and H.-W. Henze. Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the PAN study. Klin. Paediatr. 222:321–326, 2010.

    Article  CAS  Google Scholar 

  17. Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38(3):917–926, 2010.

    Article  PubMed  Google Scholar 

  18. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.

    Article  PubMed  Google Scholar 

  19. Lorensen, W. E., and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21:163–169, 1987.

    Article  Google Scholar 

  20. Midualla, M., R. Moreno, A. Baali, M. Chau, A. Negre-Salvayre, F. Nicoud, J.-P. Pruvo, S. Haulon, and H. Rousseau. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations. Eur. Radiol. 22:2094–2102, 2012.

    Article  Google Scholar 

  21. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: Impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46(1):102–109, 2013.

    Article  PubMed  Google Scholar 

  22. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Radaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3):339–355, 2011.

    Article  PubMed  Google Scholar 

  23. Olivieri, L. J., D. A. de Zelicourt, C. M. Haggerty, K. Ratnayaka, R. R. Cross, and A. P. Yoganathan. Hemodynamic modeling of surgically repaired coarctation of the aorta. Cardovasc. Eng. Technol. 2(4):288–295, 2011.

    Article  Google Scholar 

  24. Paul, M. C., and A. Larman. Investigation of a spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31:1195–1203, 2009.

    Article  PubMed  Google Scholar 

  25. Pham, D. L., C. Xu, and J. L. Prince. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd ed.). Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  27. Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338(30):1360–1361, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Tanous, D., L. N. Benson, and E. M. Horlick. Coarctation of the aorta: evaluation and management. Curr. Opin. Cardiol. 24(6):509–515, 2009.

    Article  PubMed  Google Scholar 

  29. Van Doormaal, M. A., A. Kazakidi, M. Wylezinska, A. Hunt, J. L. Tremoleda, A. Protti, Y. Bohraus, W. Gsell, P. D. Weinberg, and C. R. Ethier. Hemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J. R. Soc. Interface 9:2834–2844, 2012.

    Article  PubMed  Google Scholar 

  30. Vergara, C., F. Viscardi, L. Antiga, and G. B. Luciani. Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif. Organs. 36(4):368–378, 2012.

    Article  PubMed  Google Scholar 

  31. Wellnhofer, E., J. Osman, U. Kertzscher, K. Affeld, E. Fleck, and L. Goubergrits. Flow simulation studies in coronary arteries—impact of side-branches. Atherosclerosis 213:475–481, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Wen, J., T. Zheng, W. Jiang, X. Deng, and Y. Fan. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 57:399–406, 2011.

    Article  PubMed  Google Scholar 

  33. Wendell, D. C., M. M. Samyn, J. R. Cava, L. M. Ellwein, M. M. Krolikowski, K. L. Gandy, A. N. Pelech, S. C. Shadden, and J. F. LaDisa. Including aortic valve morphology in computational fluid dynamics simulations: Initial findings and application to aortic coarctation. Med. Eng. Phys. 35(6):723–735, 2013.

    Google Scholar 

  34. Wentzel, J. J., R. Corti, Z. A. Fayad, P. Wisdom, F. Macaluso, M. O. Winkelman, V. Fuster, and J. J. Badimon. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J. Am. Coll. Cardiol. 45(6):846–854, 2005.

    Article  PubMed  Google Scholar 

  35. Whitmore, R. L. Rheology of the Circulation. New York: Pergammon, 1968.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Goubergrits.

Additional information

Associate Editor Robert Nerem oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goubergrits, L., Mevert, R., Yevtushenko, P. et al. The Impact of MRI-based Inflow for the Hemodynamic Evaluation of Aortic Coarctation. Ann Biomed Eng 41, 2575–2587 (2013). https://doi.org/10.1007/s10439-013-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0879-2

Keywords

Navigation