Skip to main content

Advertisement

Log in

Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width in Rheumatoid Arthritis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82 μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N = 16, age: 52.6 ± 12.8) and healthy controls (CTRL, N = 7, age: 50.1 ± 15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD)—a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater vs. CTRL (p < 0.01), and JSW.MIN was more than two-fold lower (p < 0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients vs. CTRL (p < 0.05). In vivo precision was highest for JSW (SDD: 100 μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110 μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

HR-pQCT:

High-resolution peripheral quantitative computed tomography

RA:

Rheumatoid arthritis

CTRL:

Control

DMARD:

Disease-modifying antrirheumatic drug

MCP:

Metacarpophalangeal

RU:

Radioulnar

RS:

Radioscaphoid

RL:

Radiolunate

VOI:

Volume of interest

SDD:

Smallest detectable difference

JSN:

Joint space narrowing

JSV:

Joint space volume

JSW:

Joint space width

JSW.MIN:

JSW minimum

JSW.MAX:

JSW maximum

JSW.SD:

JSW standard deviation (heterogeneity)

JSW.AS:

JSW asymmetry

References

  1. Aletaha, D., J. Funovits, and J. S. Smolen. Physical disability in rheumatoid arthritis is associated with cartilage damage rather than bone destruction. Ann. Rheum. Dis. 70(5):733–739, 2011.

    Article  PubMed  Google Scholar 

  2. Barnabe, C., and L. Feehan. High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J. Rheumatol. 39(7):1494–1495, 2012.

    Article  PubMed  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Boutroy, S., M. L. Bouxsein, F. Munoz, and P. D. Delmas. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90(12):6508–6515, 2005.

    Article  PubMed  CAS  Google Scholar 

  5. Boutroy, S., B. Van Rietbergen, E. Sornay-Rendu, F. Munoz, M. L. Bouxsein, and P. D. Delmas. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23(3):392–399, 2008.

    Article  PubMed  Google Scholar 

  6. Buie, H. R., G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515, 2007.

    Article  PubMed  Google Scholar 

  7. Burghardt, A. J., J. B. Pialat, G. J. Kazakia, S. Boutroy, K. Engelke, J. M. Patsch, A. Valentinitsch, D. Liu, E. Szabo, C. E. Bogado, M. B. Zanchetta, H. A. McKay, E. Shane, S. K. Boyd, M. L. Bouxsein, R. Chapurlat, S. Khosla, and S. Majumdar. Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J. Bone Miner. Res. 28(3):524–536, 2013.

    Google Scholar 

  8. Burghardt, A. J., H. R. Buie, A. Laib, S. Majumdar, and S. K. Boyd. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528, 2010.

    Article  PubMed  Google Scholar 

  9. Burghardt, A. J., G. J. Kazakia, and S. Majumdar. A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann. Biomed. Eng. 35(10):1678–1686, 2007.

    Article  PubMed  Google Scholar 

  10. Burghardt, A. J., G. J. Kazakia, S. Ramachandran, T. M. Link, and S. Majumdar. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25(5):983–993, 2010.

    PubMed  Google Scholar 

  11. Burrows, M., D. Liu, and H. McKay. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos. Int. 21(3):515–520, 2010.

    Article  PubMed  CAS  Google Scholar 

  12. Dalzell, N., S. Kaptoge, N. Morris, A. Berthier, B. Koller, L. Braak, B. van Rietbergen, and J. Reeve. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos. Int. 20(10):1683–1694, 2009.

    Article  PubMed  CAS  Google Scholar 

  13. Edmonds, J., and M. Lassere. Imaging damage: scoring versus measuring. J. Rheumatol. 28(8):1749–1751, 2001.

    PubMed  CAS  Google Scholar 

  14. Engelke, K., B. Stampa, W. Timm, B. Dardzinski, A. E. de Papp, H. K. Genant, and T. Fuerst. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos. Int. 23(8):2151–2158, 2012.

    Article  PubMed  CAS  Google Scholar 

  15. Feldkamp, L. A., L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. J. Opt. Soc. Am. A: 1:612–619, 1984.

    Article  Google Scholar 

  16. Finzel, S., M. Englbrecht, K. Engelke, C. Stach, and G. Schett. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis. 70(1):122–127, 2011.

    Article  PubMed  Google Scholar 

  17. Fouque-Aubert, A., S. Boutroy, H. Marotte, N. Vilayphiou, E. Lespessailles, C. L. Benhamou, P. Miossec, and R. Chapurlat. Assessment of hand trabecular bone texture with high resolution direct digital radiograph in rheumatoid arthritis: a case control study. Joint, Bone, Spine: revue du rhumatisme 79(4):379–383, 2012.

    Article  Google Scholar 

  18. Hildebrand, T., and P. Ruegsegger. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185:67–75, 1997.

    Article  Google Scholar 

  19. Khosla, S., B. L. Riggs, E. J. Atkinson, A. L. Oberg, L. J. McDaniel, M. Holets, J. M. Peterson, and L. J. Melton, 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21(1):124–131, 2006.

    Article  PubMed  Google Scholar 

  20. Kirmani, S., D. Christen, G. H. van Lenthe, P. R. Fischer, M. L. Bouxsein, L. K. McCready, L. J. Melton, 3rd, B. L. Riggs, S. Amin, R. Muller, and S. Khosla. Bone structure at the distal radius during adolescent growth. J. Bone Miner. Res. 24(6):1033–1042, 2009.

    Article  PubMed  Google Scholar 

  21. Laib, A., H. J. Hauselmann, and P. Ruegsegger. In vivo high resolution 3D-QCT of the human forearm. Technol. Health Care 6(5–6):329–337, 1998.

    PubMed  CAS  Google Scholar 

  22. Laib, A., and P. Ruegsegger. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput. Med. Imaging Graph. 23(2):69–74, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Landewe, R., and D. van der Heijde. Joint space narrowing, cartilage and physical function: are we deceived by measurements and distributions? Ann. Rheum. Dis. 70(5):717–718, 2011.

    Article  PubMed  Google Scholar 

  24. Lassere, M., M. Boers, D. van der Heijde, A. Boonen, J. Edmonds, A. Saudan, and A. C. Verhoeven. Smallest detectable difference in radiological progression. J. Rheumatol. 26(3):731–739, 1999.

    PubMed  CAS  Google Scholar 

  25. Liu, X. S., X. H. Zhang, K. K. Sekhon, M. F. Adams, D. J. McMahon, J. P. Bilezikian, E. Shane, and X. E. Guo. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J. Bone Miner. Res. 25(4):746–756, 2010.

    PubMed  CAS  Google Scholar 

  26. Macdonald, H. M., K. K. Nishiyama, J. Kang, D. A. Hanley, and S. K. Boyd. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J. Bone Miner. Res. 26(1):50–62, 2011.

    Article  PubMed  Google Scholar 

  27. MacNeil, J. A., and S. K. Boyd. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 29(10):1096–1105, 2007.

    Article  PubMed  Google Scholar 

  28. Macneil, J. A., and S. K. Boyd. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213, 2008.

    Article  PubMed  Google Scholar 

  29. MacNeil, J. A., and S. K. Boyd. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 30(6):792–799, 2008.

    Article  PubMed  Google Scholar 

  30. Pauchard, Y., A. M. Liphardt, H. M. Macdonald, D. A. Hanley, and S. K. Boyd. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone 50(6):1304–1310, 2012.

    Article  PubMed  Google Scholar 

  31. Peloschek, P., G. Langs, M. Weber, J. Sailer, M. Reisegger, H. Imhof, H. Bischof, and F. Kainberger. An automatic model-based system for joint space measurements on hand radiographs: initial experience. Radiology 245(3):855–862, 2007.

    Article  PubMed  Google Scholar 

  32. Pialat, J. B., A. J. Burghardt, M. Sode, T. M. Link, and S. Majumdar. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50(1):111–118, 2012.

    Article  PubMed  CAS  Google Scholar 

  33. Sharp, J. T., J. Angwin, M. Boers, J. Duryea, A. Finckh, J. R. Hall, J. A. Kauffman, R. Landewe, G. Langs, C. Lukas, H. J. Moens, P. Peloschek, C. V. Strand, and D. van der Heijde. Multiple computer-based methods of measuring joint space width can discriminate between treatment arms in the COBRA trial—update of an ongoing OMERACT project. J. Rheumatol. 36(8):1825–1828, 2009.

    Article  PubMed  Google Scholar 

  34. Sharp, J. T., J. Angwin, M. Boers, J. Duryea, G. von Ingersleben, J. R. Hall, J. A. Kauffman, R. Landewe, G. Langs, C. Lukas, J. F. Maillefert, H. J. Bernelot Moens, P. Peloschek, V. Strand, and D. van der Heijde. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project. J. Rheumatol. 34(4):874–883, 2007.

  35. Sharp, J. T., D. van der Heijde, J. Angwin, J. Duryea, H. J. Moens, J. W. Jacobs, J. F. Maillefert, and C. V. Strand. Measurement of joint space width and erosion size. J. Rheumatol. 32(12):2456–2461, 2005.

    PubMed  Google Scholar 

  36. Sode, M., A. J. Burghardt, J. B. Pialat, T. M. Link, and S. Majumdar. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 48(6):1291–1297, 2011.

    Article  PubMed  Google Scholar 

  37. Sornay-Rendu, E., S. Boutroy, F. Munoz, and P. D. Delmas. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J. Bone Miner. Res. 22(3):425–433, 2007.

    Article  PubMed  Google Scholar 

  38. Srikhum, W., W. Virayavanich, A. J. Burghardt, A. Yu, T. M. Link, J. B. Imboden, and X. Li. Quantitative and semiquantitative bone erosion assessment on high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. J. Rheumatol. 40(4):408–416, 2013.

    Google Scholar 

  39. Stach, C. M., M. Bauerle, M. Englbrecht, G. Kronke, K. Engelke, B. Manger, and G. Schett. Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum. 62(2):330–339, 2010.

    PubMed  Google Scholar 

  40. Stein, E. M., X. S. Liu, T. L. Nickolas, A. Cohen, V. Thomas, D. J. McMahon, C. Zhang, P. T. Yin, F. Cosman, J. Nieves, X. E. Guo, and E. Shane. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J. Bone Miner. Res. 25(12):2572–2581, 2010.

    Article  PubMed  Google Scholar 

  41. Tjong, W., G. J. Kazakia, A. J. Burghardt, and S. Majumdar. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med. Phys. 39(4):1893–1903, 2012.

    Article  PubMed  Google Scholar 

  42. van der Heijde, D. How to read radiographs according to the Sharp/van der Heijde method. J. Rheumatol. 27(1):261–263, 2000.

    PubMed  Google Scholar 

  43. Vico, L., M. Zouch, A. Amirouche, D. Frere, N. Laroche, B. Koller, A. Laib, T. Thomas, and C. Alexandre. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J. Bone Miner. Res. 23(11):1741–1750, 2008.

    Article  PubMed  Google Scholar 

  44. Zhu, T. Y., J. F. Griffith, L. Qin, V. W. Hung, T. N. Fong, S. K. Au, X. L. Tang, A. W. Kwok, P. C. Leung, E. K. Li, and L. S. Tam. Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case-control study. J. Bone Miner. Res. 28(4):794–806, 2013.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Melissa Guan, Thelma Munoz, and Gus Del Puerto for coordinating subject recruitment, and translation assistance. Furthermore they thank Dr. Miki Sode, Ph.D. and Steve Rock for the design and construction of the forearm cast used for MCP imaging. This study was supported with funds from a UCSF Academic Senate Grant (XL), NIH R01 AG17762 (SM), and NIH R01 AR060700 (AJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Burghardt.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burghardt, A.J., Lee, C.H., Kuo, D. et al. Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width in Rheumatoid Arthritis. Ann Biomed Eng 41, 2553–2564 (2013). https://doi.org/10.1007/s10439-013-0871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0871-x

Keywords

Navigation