Skip to main content

Advertisement

Log in

Consistency Among Musculoskeletal Models: Caveat Utilitor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Commentary to this article was published on 07 November 2014

Abstract

Musculoskeletal simulation software and model repositories have broadened the user base able to perform musculoskeletal analysis and have facilitated in the sharing of models. As the recognition of musculoskeletal modeling continues to grow as an engineering discipline, the consistency in results derived from different models and software is becoming more critical. The purpose of this study was to compare eight models from three software packages and evaluate differences in quadriceps moment arms, predicted muscle forces, and predicted tibiofemoral contact forces for an idealized knee-extension task spanning −125 to +10° of knee extension. Substantial variation among models was observed for the majority of aspects evaluated. Differences among models were influenced by knee angle, with better agreement of moment arms and tibiofemoral joint contact force occurring at low to moderate knee flexion angles. The results suggest a lack of consistency among models and that output differences are not simply an artifact of naturally occurring inter-individual differences. Although generic musculoskeletal models can easily be scaled to consistent limb lengths and use the same muscle recruitment algorithm, the results suggest those are not sufficient conditions to produce consistent muscle or joint contact forces, even for simplified models with no potential of co-contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ahmed, S., and K. Babski-Reeves. Assessment of upper extremity postures in novice and expert during simulated carpentry tasks. Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 56:1173–1177, 2012.

    Article  Google Scholar 

  2. Alkjaer, T., M. R. Wieland, M. S. Andersen, E. B. Simonsen, and J. Rasmussen. Computational modeling of a forward lunge: towards a better understanding of the function of the cruciate ligaments. J. Anat. 221:590–597, 2012.

    Article  PubMed  Google Scholar 

  3. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Andersen, M. S., M. de Zee, S. Dendorfer, B. MacWilliams, and J. Rasmussen. Validation of a detailed lower extremity model based on the klein horsman data set. In: The 12th International Symposium On Computer Simulation In Biomechanics, edited by Proceedings Of. Cape Town: South Africa, 2009, pp. 27–28.

    Google Scholar 

  5. Andrews, B. J., J. Shippen, R. S. Gibbons, B. May, and G. Wheeler. FES rowing biomechanics: fixed and floating stretcher ergometers. In: 17th Annual International FES Society Conference: Smart Machines—Neural Evolution, Banff, Alberta, Canada, 2012.

  6. Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  8. Azmy, C., S. Guérard, X. Bonnet, F. Gabrielli, and W. Skalli. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty. Orthop. Traumatol. Surg. Res. 96:28–36, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Blemker, S. S., D. S. Asakawa, G. E. Gold, and S. L. Delp. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25:441–451, 2007.

    Article  PubMed  Google Scholar 

  10. Buford, W. L., Jr., F. M. Ivey, Jr., J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, and A. A. Stewart. Muscle balance at the knee-moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5:367–379, 1997

    Google Scholar 

  11. Chang, C.-Y., J. D. Rupp, M. P. Reed, R. E. Hughes, and L. W. Schneider. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J. 53:291–328, 2009.

    PubMed  Google Scholar 

  12. Correa, T. A., R. Baker, H. K. Graham, and M. G. Pandy. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J. Biomech. 44:2096–2105, 2011.

    Article  PubMed  Google Scholar 

  13. Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14:1100–1111, 2006.

    Article  Google Scholar 

  14. de Zee, M., M. Lund, C. Schwartz, C. Olesen, and J. Rasmussen. Validation of musculoskeletal models: the importance of trend validations. Leuven, Belgium: IUTAM Symposium on Human Movement Analysis and Simulation, 2010.

    Google Scholar 

  15. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  16. Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. D’Lima, D. D., N. Steklov, S. Patil, and C. W. Colwell, Jr. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 466:2605–2611, 2008.

    Article  PubMed  Google Scholar 

  19. Draganich, L. F., T. P. Andriacchi, and G. B. Andersson. Interaction between intrinsic knee mechanics and the knee extensor mechanism. J. Orthop. Res. 5:539–547, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Dubowsky, S. R., J. Rasmussen, S. A. Sisto, and N. A. Langrana. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. J. Biomech. 41:2981–2988, 2008.

    Article  PubMed  Google Scholar 

  21. Dudley-Javoroski, S., A. E. Littmann, S.-H. Chang, C. L. McHenry, and R. K. Shields. Enhancing muscle force and femur compressive loads via feedback-controlled stimulation of paralyzed quadriceps in humans. Arch. Phys. Med. Rehabil. 92:242–249, 2011.

    Article  PubMed  Google Scholar 

  22. Duffy, V. G. Handbook Of Digital Human Modeling: Research For Applied Ergonomics And Human Factors Engineering 1st ed. Boca Raton: CRC Press, Inc., 2008.

    Book  Google Scholar 

  23. Escamilla, R. F., G. S. Fleisig, T. M. Lowry, S. W. Barrentine, and J. R. Andrews. A three-dimensional biomechanical analysis of the squat during varying stance widths. Med. Sci. Sports Exerc. 33:984–998, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Escamilla, R. F., G. S. Fleisig, N. Zheng, J. E. Lander, S. W. Barrentine, J. R. Andrews, B. W. Bergemann, and C. T. Moorman, III. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 33:1552–1566, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Farrell, K. C., K. D. Reisinger, and M. D. Tillman. Force and repetition in cycling: possible implications for iliotibial band friction syndrome. Knee 10:103–109, 2003.

    Article  PubMed  Google Scholar 

  26. Fotoohabadi, M. R., E. A. Tully, and M. P. Galea. Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys. Ther. 90:561–571, 2010.

    Article  PubMed  Google Scholar 

  27. Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    Article  PubMed  Google Scholar 

  28. Frey Law, L. A., and R. K. Shields. Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clin. Biomech. (Bristol, Avon) 19:313–321, 2004.

    Google Scholar 

  29. Grood, E. S., W. J. Suntay, F. R. Noyes, and D. L. Butler. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J. Bone Joint Surg. Am. 66:725–734, 1984.

    PubMed  CAS  Google Scholar 

  30. Grujicic, M., G. Arakere, X. Xie, M. LaBerge, A. Grujicic, D. W. Wagner, and A. Vallejo. Design-optimization and material selection for a femoral-fracture fixation-plate implant. Mater. Des. 31:3463–3473, 2010.

    Article  Google Scholar 

  31. Grujicic, M., B. Pandurangan, X. Xie, A. K. Gramopadhye, D. W. Wagner, and M. Ozen. Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue. Int. J. Ind. Ergon. 40:345–355, 2010.

    Article  Google Scholar 

  32. Grujicic, M., X. Xie, G. Arakere, A. Grujicic, D. W. Wagner, and A. Vallejo. Design-optimization and material selection for a proximal radius fracture-fixation implant. J. Mater. Eng. Perform. 19:1090–1103, 2010.

    Article  CAS  Google Scholar 

  33. Hamner, S. R., A. Seth, and S. L. Delp. Muscle contributions to propulsion and support during running. J. Biomech. 43:2709–2716, 2010.

    Article  PubMed  Google Scholar 

  34. Hettinga, D. M., and B. J. Andrews. The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. Neuromodulation 10:291–297, 2007.

    Article  PubMed  Google Scholar 

  35. Iwami, T., K. Miyawaki, K. Hiramoto, M. Takeshima, T. Matsunaga, Y. Shimada, and G. Obinata. Biomechanical analysis and muscle tension estimation of the lower extremities using EMG data. International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2010, 2010, pp 175–180.

  36. Kiratli, B. J. Immobilization osteopenia. In: Osteoporosis, 2nd edition. San Diego: Academic Press, 2001, pp. 207–227.

  37. Klein Horsman, M. D., H. F. J. M. Koopman, F. C. T. van der Helm, L. P. Prosé, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. (Bristol, Avon) 22:239–247, 2007.

    Google Scholar 

  38. Klein Horsman, M. D. The Twente Lower Extremity Model: Consistent Dynamic Simulation of the Human Locomotor Apparatus [dissertation]. Department of Engineering Technology. Enschede, The Netherlands: University of Twente, 2007.

  39. Krevolin, J. L., M. G. Pandy, and J. C. Pearce. Moment arm of the patellar tendon in the human knee. J. Biomech. 37:785–788, 2004.

    Article  PubMed  Google Scholar 

  40. Kutzner, I., B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and G. Bergmann. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43:2164–2173, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Leszko, F., K. R. Hovinga, A. L. Lerner, R. D. Komistek, and M. R. Mahfouz. In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin. Orthop. Relat. Res. 469:95–106, 2011.

    Article  PubMed  Google Scholar 

  42. Lund, M. E., M. de Zee, M. S. Andersen, and J. Rasmussen. On validation of multibody musculoskeletal models. Proc. Inst. Mech. Eng. H. 226:82–94, 2012.

    Article  PubMed  Google Scholar 

  43. McFadyen, B. J., and D. A. Winter. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21:733–744, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. McHenry, C. L., and R. K. Shields. A biomechanical analysis of exercise in standing, supine, and seated positions: Implications for individuals with spinal cord injury. J. Spinal Cord Med. 35:140–147, 2012.

    Article  PubMed  Google Scholar 

  45. Modenese, L., A. T. M. Phillips, and A. M. J. Bull. An open source lower limb model: hip joint validation. J. Biomech. 44:2185–2193, 2011.

    Article  PubMed  CAS  Google Scholar 

  46. Perry, J. Gait Analysis : Normal And Pathological Function. Thorofare, N.J.: SLACK inc., 1992.

    Google Scholar 

  47. Pontonnier, C., M. de Zee, A. Samani, G. Dumont, and P. Madeleine. Trend Validation of a Musculoskeletal Model with a Workstation Design Parameter. ISB Technical Group on Computer Simulation Symposium 2011, Leuven, Belgium, 2011.

  48. Raikova, R. T., and B. I. Prilutsky. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J. Biomech. 34:1243–1255, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Rasmussen, J., M. Boocock, and G. Paul. Advanced musculoskeletal simulation as an ergonomic design method. Work: J. Prev. Assess. Rehabil. 41:6107–6111, 2012.

    Google Scholar 

  50. Rasmussen, J., and M. de Zee. Design optimization of airline seats. In: Sae Transactions: Journal of Passenger Cars—Electronic and Electrical Systems, 2008.

  51. Roebuck, J. A. Anthropometric Methods : Designing To Fit The Human Body. Santa Monica, CA, USA: Human Factors and Ergonomics Society, 1995.

    Google Scholar 

  52. Scheys, L., K. Desloovere, P. Suetens, and I. Jonkers. Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion. J. Biomech. 44:1346–1353, 2011.

    Article  PubMed  Google Scholar 

  53. Scheys, L., A. Spaepen, P. Suetens, and I. Jonkers. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28:640–648, 2008.

    Article  PubMed  Google Scholar 

  54. Scheys, L., A. Van Campenhout, A. Spaepen, P. Suetens, and I. Jonkers. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths. Gait Posture 28:358–365, 2008.

    Article  PubMed  Google Scholar 

  55. Seth, A., M. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232, 2011.

    Article  Google Scholar 

  56. Sherman, M., A. Seth, and S. Delp. How to compute muscle moment arm using generalized coordinates, Rev. 0.2. http://simtk-confluence.stanford.edu:8080/x/yoQz. 2010.

  57. Shippen, J. M., and B. May. Calculation of muscle loading and joint contact forces during the rock step in Irish dance. J. Dance Med. Sci. 14:11–18, 2010.

    PubMed  Google Scholar 

  58. Steele, K. M., M. S. Demers, M. H. Schwartz, and S. L. Delp. Compressive tibiofemoral force during crouch gait. Gait Posture 35:556–560, 2012.

    Article  PubMed  Google Scholar 

  59. Trepczynski, A., I. Kutzner, E. Kornaropoulos, W. R. Taylor, G. N. Duda, G. Bergmann, and M. O. Heller. Patellofemoral joint contact forces during activities with high knee flexion. J. Orthop. Res. 30:408–415, 2012.

    Article  PubMed  Google Scholar 

  60. Vandenberghe, A., L. Bosmans, J. De Schutter, S. Swinnen, and I. Jonkers. Quantifying individual muscle contribution to three-dimensional reaching tasks. Gait Posture 35:579–584, 2012.

    Article  PubMed  Google Scholar 

  61. Viceconti, M. A tentative taxonomy for predictive models in relation to their falsifiability. Philos. Trans. A Math. Phys. Eng. Sci. 369:4149–4161, 2011.

    Article  PubMed  Google Scholar 

  62. Viceconti, M., D. Testi, F. Taddei, S. Martelli, G. J. Clapworthy, and S. V. S. Jan. Biomechanics Modeling of the Musculoskeletal Apparatus: Status and Key Issues. Proc. IEEE 94:725–739, 2006.

    Article  Google Scholar 

  63. Wagner, D. W., J. Rasmussen, and M. P. Reed. Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling tasks using the AnyBody Modeling System. In: Sae Transactions: Journal Of Passenger Cars—Mechanical Systems, 2007, pp. 2092–2101.

  64. Wagner, D. W., K. Divringi, C. Ozcan, M. Grujicic, B. Pandurangan, and A. Grujicic. Combined musculoskeletal dynamics/structural finite element analysis of femur physiological loads during walking. Multidiscip. Model. Mater. Struct. 6:417–437, 2010.

    Google Scholar 

  65. Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965–974, 1988.

    Article  PubMed  CAS  Google Scholar 

  66. Ward, S. R., C. M. Eng, L. H. Smallwood, and R. L. Lieber. Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467:1074–1082, 2009.

    Article  PubMed  Google Scholar 

  67. Wilk, K. E., R. F. Escamilla, G. S. Fleisig, S. W. Barrentine, J. R. Andrews, and M. L. Boyd. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am. J. Sports Med. 24:518–527, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Wilson, N. A., and F. T. Sheehan. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components. J. Biomech. 42:1891–1897, 2009.

    Article  PubMed  Google Scholar 

  69. Yamaguchi, G. T., and F. E. Zajac. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22:1–10, 1989.

    Article  PubMed  CAS  Google Scholar 

  70. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Dept of Veterans Affairs, Rehab R&D (Proj. A6816R) and by the Paralyzed Veterans of America Endowment for Spinal Cord Injury at Stanford University.

Conflict of interest

Matthew S. DeMers collaborated on the development of the Steele 2012 model evaluated in this manuscript. James M. Shippen is the primary developer of the Biomechanics of Bodies software used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Wagner.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

A comment to this article is available at http://dx.doi.org/10.1007/s10439-014-1153-y.

Appendix

Appendix

See Table 7.

Table 7 Musculoskeletal software and model download locations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, D.W., Stepanyan, V., Shippen, J.M. et al. Consistency Among Musculoskeletal Models: Caveat Utilitor. Ann Biomed Eng 41, 1787–1799 (2013). https://doi.org/10.1007/s10439-013-0843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0843-1

Keywords

Navigation