Skip to main content
Log in

Isolation of Functional Human Endothelial Cells from Small Volumes of Umbilical Cord Blood

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs) isolated from endothelial progenitor cells in blood have great potential as a therapeutic tool to promote vasculogenesis and angiogenesis and treat cardiovascular diseases. However, current methods to isolate ECs are limited by a low yield with few colonies appearing during isolation. In order to utilize blood-derived ECs for therapeutic applications, a simple method is needed that can produce a high yield of ECs from small volumes of blood without the addition of animal-derived products. For the first time, we show that human ECs can be isolated without the prior separation of blood components through the technique of diluted whole blood incubation (DWBI) utilizing commercially available human serum. We isolated ECs from small volumes of blood (~10 mL) via DWBI and characterized them with flow cytometry, immunohistochemistry, and uptake of DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL). These ECs are functional as demonstrated by their ability to form tubular networks in Matrigel, adhere and align with flow under physiological fluid shear stress, and produce increased nitric oxide under fluid flow. An average of 7.0 ± 2.5 EC colonies that passed all functional tests described above were obtained per 10 mL of blood as compared to only 0.3 ± 0.1 colonies with the traditional method based on density centrifugation. The time until first colony appearance was 8.3 ± 1.2 days for ECs isolated with the DWBI method and 12 ± 1.4 days for ECs isolated with the traditional isolation method. A simplified method, such as DWBI, in combination with advances in isolation yield could enable the use of blood-derived ECs in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Achneck, H. E., R. M. Jamiolkowski, A. E. Jantzen, J. M. Haseltine, W. O. Lane, J. K. Huang, L. J. Galinat, M. J. Serpe, F.-H. Lin, M. Li, A. Parikh, L. Ma, T. Chen, B. Sileshi, C. A. Milano, C. S. Wallace, T. V. Stabler, J. D. Allen, G. A. Truskey, and J. H. Lawson. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells EPC-seeded antithrombotic Ti implants. Biomaterials 32:10–18, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Achneck, H. E., B. Sileshi, and J. H. Lawson. Review of the biology of bleeding and clotting in the surgical patient. Vascular 16:S6–S13, 2008.

    PubMed  Google Scholar 

  3. Allen, J. D., E. M. Miller, E. Schwark, J. L. Robbins, B. D. Duscha, and B. H. Annex. Plasma nitrite response and arterial reactivity differentiate vascular health and performance. Nitric Oxide 20:231–237, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Asahara, T., and A. Kawamoto. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol. 287:C572–C579, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, M. A., C. S. Wallace, M. Angelos, and G. A. Truskey. Characterization of umbilical cord blood-derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng. Part A 15:3575–3587, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, M. A., L. Zhang, V. W. Levering, J.-H. Wu, L. L. Satterwhite, L. Brian, N. J. Freedman, and G. A. Truskey. Human umbilical cord blood-derived endothelial cells reendothelialize vein grafts and prevent thrombosis. Arterioscler. Thromb. Vasc. Biol. 30:2150–2155, 2010.

    Article  PubMed  CAS  Google Scholar 

  7. Campbell, L. H., and K. G. M. Brockbank. Serum-free solutions for cryopreservation of cells. In Vitro Cell. Dev. Biol. Anim. 43:269–275, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Cheung, A. L. Isolation and culture of human umbilical vein endothelial cells (HUVEC). Curr. Protoc. Microbiol. Appendix 4:Appendix 4B, 2007.

  9. Coldwell, K. E., S. J. Lee, J. Kean, C. P. Khoo, G. Tsaknakis, J. Smythe, and S. M. Watt. Effects of obstetric factors and storage temperatures on the yield of endothelial colony forming cells from umbilical cord blood. Angiogenesis 14:381–392, 2011.

    Article  PubMed  Google Scholar 

  10. Goligorsky, M. S. Endothelial cell dysfunction and nitric oxide synthase. Kidney Int. 58:1360–1376, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Gulati, R., D. Jevremovic, T. E. Peterson, S. Chatterjee, V. Shah, R. G. Vile, and R. D. Simari. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res. 93:1023–1025, 2003.

    Article  PubMed  CAS  Google Scholar 

  12. Haendeler, J. Nitric oxide and endothelial cell aging. Eur. J. Clin. Pharmacol. 62:137–140, 2006.

    Article  CAS  Google Scholar 

  13. Hewett, P. W., J. C. Murray, E. A. Price, M. E. Watts, and M. Woodcock. Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue. In Vitro Cell. Dev. Biol. Anim. 29A:325–331, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Hirschi, K. K., D. A. Ingram, and M. C. Yoder. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28:1584–1595, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Hofmann, N. A., A. Reinisch, and D. Strunk. Endothelial colony-forming progenitor cell isolation and expansion. Methods Mol. Biol. 879:381–387, 2012.

    Article  PubMed  CAS  Google Scholar 

  16. Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Jakoby, B. J., and I. H. Pastan. Cell Culture. New York: Academic Press, 77 pp, 1979.

  18. Konno, M., T. S. Hamazaki, S. Fukuda, M. Tokuhara, H. Uchiyama, H. Okazawa, H. Okochi, and M. Asashima. Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochem. Biophys. Res. Commun. 400:461–465, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Lane, W. O., A. E. Jantzen, T. A. Carlon, R. M. Jamiolkowski, J. E. Grenet, M. M. Ley, J. M. Haseltine, L. J. Galinat, F.-H. Lin, J. D. Allen, G. A. Truskey, and H. E. Achneck. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress. J. Vis. Exp. e3349, 2012.

  20. Maciag, T., G. A. Hoover, M. B. Stemerman, and R. Weinstein. Serial propagation of human-endothelial cells-invitro. J. Cell Biol. 91:420–426, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Mund, J. A., M. L. Estes, M. C. Yoder, D. A. Ingram, and J. Case. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32:1045–1053, 2012.

    Article  PubMed  CAS  Google Scholar 

  22. Murasawa, S., and T. Asahara. Endothelial progenitor cells for vasculogenesis. Physiology 20:36–42, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Murga, M., L. Yao, and G. Tosato. Derivation of endothelial cells from CD34(−) umbilical cord blood. Stem Cells 22:385–395, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Palmer, R. M. J., L. Bridge, N. A. Foxwell, and S. Moncada. The role of nitric-oxide in endothelial-cell damage and its inhibition by glucocorticoids. Br. J. Pharmacol. 105:11–12, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Purhonen, S., J. Palm, D. Rossi, N. Kaskenpaa, I. Rajantie, S. Yla-Herttuala, K. Alitalo, I. L. Weissman, and P. Salven. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl. Acad. Sci. U.S.A. 105:6620–6625, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Rauch, C., E. Feifel, E. M. Amann, H. P. Spotl, H. Schennach, W. Pfaller, and G. Gstraunthaler. Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX 28:305–316, 2011.

    PubMed  Google Scholar 

  27. Reinisch, A., N. A. Hofmann, A. C. Obenauf, K. Kashofer, E. Rohde, K. Schallmoser, K. Flicker, G. Lanzer, W. Linkesch, M. R. Speicher, and D. Strunk. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 113:6716–6725, 2009.

    Article  PubMed  CAS  Google Scholar 

  28. Shi, Q., S. Rafii, M. H. D. Wu, E. S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. S. Moore, R. F. Storb, and W. P. Hammond. Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367, 1998.

    PubMed  CAS  Google Scholar 

  29. Steffen, Y., G. Vuillaume, K. Stolle, K. Roewer, M. Lietz, J. Schueller, S. Lebrun, and T. Wallerath. Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase. Nitric Oxide 27:176–184, 2012.

    Article  PubMed  CAS  Google Scholar 

  30. Stroncek, J. D., B. S. Grant, M. A. Brown, T. J. Povsic, G. A. Truskey, and W. M. Reichert. Comparison of endothelial cell phenotypic markers of late-outgrowth endothelial progenitor cells isolated from patients with coronary artery disease and healthy volunteers. Tissue Eng. Part A 15:3473–3486, 2009.

    Article  PubMed  CAS  Google Scholar 

  31. Sun, X., L. M. Cheng, H. X. Duan, G. Lin, and G. X. Lu. Characterization and comparison of embryonic stem cell-derived KDR plus cells with endothelial cells. Microvasc. Res. 84:149–154, 2012.

    Article  PubMed  CAS  Google Scholar 

  32. Tateishi, K., W. Ando, C. Higuchi, D. A. Hart, J. Hashimoto, K. Nakata, H. Yoshikawa, and N. Nakamura. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant. 17:549–557, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Thill, M., N. V. Strunnikova, M. J. Berna, N. Gordiyenko, K. Schmid, S. W. Cousins, D. J. S. Thompson, and K. G. Csaky. Late outgrowth endothelial progenitor cells in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49:2696–2708, 2008.

    Article  PubMed  Google Scholar 

  34. Thompson, M. M., J. S. Budd, S. L. Eady, M. J. Underwood, R. F. L. James, and P. R. F. Bell. The effect of transluminal endothelial seeding on myointimal hyperplasia following angioplasty. Eur. J. Vasc. Surg. 8:423–434, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Timmermans, F., J. Plum, M. C. Yoder, D. A. Ingram, B. Vandekerckhove, and J. Case. Endothelial progenitor cells: identity defined? J. Cell Mol. Med. 13:87–102, 2009.

    Article  PubMed  Google Scholar 

  36. Tura, O., E. M. Skinner, G. Robin Barclay, K. Samuel, R. C. Gallagher, M. Brittan, P. W. Hadoke, D. E. Newby, M. L. Turner, and N. L. Mills. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348, 2012.

    Article  Google Scholar 

  37. World Health Organization. WHO Guidelines on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies. Geneva: World Health Organization, 2006.

    Google Scholar 

  38. Yalcin, O., P. Ulker, U. Yavuzer, H. J. Meiselman, and O. K. Baskurt. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation. Am. J. Physiol. Heart Circ. Physiol. 294:H2098–H2105, 2008.

    Article  PubMed  CAS  Google Scholar 

  39. Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, P., N. Moudgill, E. Hager, N. Tarola, C. DiMatteo, S. McIlhenny, T. Tulenko, and P. J. DiMuzio. Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells Dev. 20:977–988, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NIH for its support through grant 1R21-HL109897-01 and the American Heart Association (AHA) for its support through grant #12BGIA11070002 to Hardean E. Achneck. We are further grateful for support from the National Science Foundation Graduate Research Fellowship and AHA predoctoral fellowship 12PRE11180003 to Alexandra E. Jantzen. We thank Tracy Cheung and Cristina Fernandez of Duke University Department of Biomedical Engineering for conducting hUCB-EC isolation experiments.

Conflict of interest

The authors declare no conflicts of interest. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardean E. Achneck.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.D., Carlon, T.A., Jantzen, A.E. et al. Isolation of Functional Human Endothelial Cells from Small Volumes of Umbilical Cord Blood. Ann Biomed Eng 41, 2181–2192 (2013). https://doi.org/10.1007/s10439-013-0807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0807-5

Keywords

Navigation