Skip to main content
Log in

An In vitro Study on the Deposition of Micrometer-Sized Particles in the Extrathoracic Airways of Adults During Tidal Oral Breathing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Deposition of particles in the aerodynamic diameter range of 0.5–6.7 μm was measured in nine replicas of the extrathoracic airways of adults with four sinusoidal patterns and oral breathing. The four chosen breathing patterns are typical of those occurring during natural resting breathing and during nebulization therapy. Additionally, deposition of micrometer-sized particles in the “Alberta Idealized Adult Throat,” which was previously found useful in simulating the average deposition of particles during inhalation of constant flow rates, was measured during inhalation of the four sinusoidal patterns in this study. To reduce intersubject scatter in developing predictive correlations, the non-dimensional Reynolds (Re) and Stokes (Stk) numbers are used with the square root of the average cross sectional area of the oral airways as the characteristic diameter being found to reduce intersubject variability to the highest extent. Our best fit to the deposition data is given by \( \eta = [1 - 1/\left( {1.51 \times 10^{5} (Stk^{ 3. 0 3} \text{Re}^{ 0. 2 5} ) + 1} \right)] \times 100 \). Moreover, the “Alberta Idealized Adult Throat” is found to mimic average deposition, given in past in vivo studies, in the upper airways of adults during natural tidal breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bowes, S. M., and D. L. Swift. Deposition of inhaled particles in the oral airway during oronasal breathing. Aerosol. Sci. Technol. 11:157–167, 1989.

    Article  Google Scholar 

  2. Byron, P. R., M. Hindle, C. F. Lange, P. W. Longest, D. McRobbie, M. J. Oldham, B. Olsson, C. G. Thiel, H. Wachtel, and W. H. Finlay. In vivo-in vitro correlations: predicting pulmonary drug deposition from pharmaceutical aerosols. J. Aerosol. Med. 23(S2):S59–S69, 2010.

    CAS  Google Scholar 

  3. Chan, T. L., and M. Lippmann. Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Chan, H. K., P. R. Phipps, I. Gonda, P. Cook, R. Fulton, I. Young, and G. Bautovich. Regional deposition of nebulized hypodense nonisotonic solutions in the human respiratory tract. Eur. Respir. J. 7:1483–1489, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng, Y. S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 37(8):659–671, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Cheng, Y. S., Y. Zhou, and T. B. Chen. Particle deposition in a cast of human oral airways. Aerosol. Sci. Technol. 31:286–300, 1999.

    Article  CAS  Google Scholar 

  7. Conway, J., J. Fleming, C. Majoral, I. Katz, D. Perchet, C. Peebles, L. Tossici-Bolt, L. Collier, G. Cailliobotte, M. Pichelin, V. Sauret-Jackson, T. Martonen, G. Apiou-Sbirlea, B. Muellinger, P. Kroneberg, J. Gleske, G. Scheuch, J. Texereau, A. Martin, S. Montesantos, and M. Bennett. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation. J. Aerosol Sci. 52:1–17, 2012.

    Article  CAS  Google Scholar 

  8. DeHaan, W. H., and W. H. Finlay. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices. J. Aerosol Med. 14(3):361–367, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. DeHaan, W. H., and W. H. Finlay. Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci. 35(3):309–331, 2004.

    Article  CAS  Google Scholar 

  10. Delvadia, R. R., P. W. Longest, and P. R. Byron. In vitro tests for aerosol deposition. I: scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J. Aerosol. Med. 25(1):32–40, 2012.

    CAS  Google Scholar 

  11. Ehtezazi, T., M. A. Horsfield, P. W. Barry, and C. O’Callaghan. Dynamic change of the upper airway during inhalation via aerosol delivery devices. J. Aerosol Med. 17(4):325–334, 2004.

    Article  PubMed  Google Scholar 

  12. Emmett, P. C., R. J. Aitken, and W. J. Hannan. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. J. Aerosol Sci. 13(6):549–560, 1982.

    Article  CAS  Google Scholar 

  13. Finlay, W. H. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. London: Academic Press, 2001.

    Google Scholar 

  14. Foord, N., A. Black, and M. Walsh. Regional deposition of 2.5–7.5 μm diameter inhaled particles in healthy male non-smokers. J. Aerosol Sci. 9:343–357, 1978.

    Article  Google Scholar 

  15. Fouke, J. M., and K. P. Strohl. Effect of position and lung volume on upper airway geometry. J. Appl. Physiol. 63:375–380, 1987.

    PubMed  CAS  Google Scholar 

  16. Golshahi, L., R. Vehring, M. L. Noga, and W. H. Finlay. In vitro deposition of micrometer-sized particles in the extrathoracic airways of children during tidal oral breathing. J. Aerosol. Sci. 57:14–21, 2013.

    Google Scholar 

  17. Golshahi, L., M. L. Noga, and W. H. Finlay. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J. Aerosol Sci. 49:21–31, 2012.

    Article  CAS  Google Scholar 

  18. Grgic, B., W. H. Finlay, P. K. P. Burnell, and A. F. Heenan. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J. Aerosol. Sci. 35:1025–1040, 2004.

    Article  CAS  Google Scholar 

  19. Grgic, B., A. R. Martin, and W. H. Finlay. The effect of unsteady flow rate increase on in vitro mouth-throat deposition of inhaled boluses. J. Aerosol Sci. 37(10):1222–1233, 2006.

    Article  CAS  Google Scholar 

  20. Gurman, J. L., M. Lippmann, and R. B. Schlesinger. Particle deposition in replicate casts of the human upper tracheobronchial tree under constant and cyclic inspiratory flow. I. Experimental. Aerosol Sci. Technol. 3(3):245–252, 1984.

    Article  Google Scholar 

  21. Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley, 1999.

    Google Scholar 

  22. Hofmann, W., T. B. Martonen, and R. C. Graham. Predicted deposition of nonhygroscopic aerosols in the human lung as a subject of human age. J. Aerosol Med. 2(1):49–68, 1989.

    Article  Google Scholar 

  23. International Commission on Radiological Protection (ICRP), Publication 66. Human Respiratory Tract Model for Radiological Protection, Oxford: Pergamon Press, 1994.

  24. Jan, M. A., I. Marshall, and N. J. Douglas. Effect of posture on upper airway dimensions in normal human. Am. J. Respir. Crit. Care. Med. 149:145–148, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Lin, T., P. N. Breysse, B. L. Laube, and D. L. Swift. Mouthpiece diameter affects deposition efficiency in cast models of the human oral airways. J. Aerosol Med. 14(3):335–341, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Lippmann, M. Regional deposition of particles in the human respiratory tract. In: Handbook of Physiology—Reaction to Environmental Agents, edited by D. H. K. Lee, and et al. Bethesda, MD: American Physiology Society, 1977, pp. 213–232.

    Google Scholar 

  27. Lippmann, M., and R. E. Albert. The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 30:257–275, 1969.

    PubMed  CAS  Google Scholar 

  28. Roth, A. P., C. F. Lange, and W. H. Finlay. The effect of breathing pattern on nebulizer drug delivery. J. Aerosol Med. 16:325–339, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Rudolf, G., R. Kobrich, and W. Stahlhofen. Modeling an algebraic formulation of regional aerosol deposition in man. J. Aerosol Sci. 21(Suppl. 1):403–406, 1990.

    Article  Google Scholar 

  30. Schwab, R. J., W. B. Gefter, A. I. Pack, and E. A. Hoffman. Dynamic imaging of the upper airway during respiration in normal subjects. J. Appl. Physiol. 74(4):1504–1514, 1993.

    PubMed  CAS  Google Scholar 

  31. Sosnowski, T. R., A. Moskal, and L. Gradon. Mechanisms of aerosol particle deposition in the oro-pharynx under non-steady airflow. Ann. Occup. Hyg. 51(1):19–25, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Stahlhofen, W., J. Gebhart, and J. Heyder. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 41:385–398, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Stahlhofen, W., J. Gebhart, and J. Heyder. Biological variability of regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 42:348–352, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Stahlhofen, W., J. Gebhart, J. Heyder, and G. Scheuch. New regional deposition data of the human respiratory tract. J. Aerosol Sci. 14:186–188, 1983.

    Article  Google Scholar 

  35. Stahlhofen, W., G. Rudolf, and A. C. James. Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2(3):285–308, 1989.

    Article  Google Scholar 

  36. Sutthiprapaporn, P., K. Tanimoto, M. Ohtsuka, T. Nagasaki, Y. Iida, and A. Katsumata. Positional changes of oropharyngeal structures due to gravity in the upright and supine positions. Dentomaxillofac. Radiol. 37:130–136, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33:257–281, 2002.

    Article  CAS  Google Scholar 

  38. Zhou, Y., J. Sun, and Y. S. Cheng. Comparison of deposition in the USP and physical mouth-throat models with solid and liquid particles. J. Aerosol Med. 24:1–8, 2011.

    Google Scholar 

Download references

Acknowledgments

The technical support of PET/CT center at the Stollery Children’s Hospital and Institute for Reconstructive Sciences in Medicine (iRSM) in imaging and rapid prototyping is gratefully acknowledged. This work was supported by grants and scholarships from Alberta Advanced Education and Technology, the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Golshahi.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golshahi, L., Noga, M.L., Vehring, R. et al. An In vitro Study on the Deposition of Micrometer-Sized Particles in the Extrathoracic Airways of Adults During Tidal Oral Breathing. Ann Biomed Eng 41, 979–989 (2013). https://doi.org/10.1007/s10439-013-0747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0747-0

Keywords

Navigation