Skip to main content
Log in

A Study of Artifacts and Their Removal During Forced Oscillation of the Respiratory System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Respiratory impedance measured by the forced oscillation technique (FOT) can be contaminated by artifacts such as coughing, vocalization, swallowing or leaks at the mouthpiece. We present a novel technique to detect these artifacts using multilevel discrete wavelet transforms. FOT was performed with artifacts introduced during separate 60 s recordings at known times in 10 healthy subjects. Brief glottal closures were generated phonetically and confirmed by nasopharyngoscopic imaging of the glottis. Artifacts were detected using Daubechies wavelets by applying a threshold to squared detail coefficients from the wavelet transforms of both pressure and flow signals. Sensitivity and specificity were compared over a range of thresholds for different level squared detail coefficients. Coughs could be identified using 1st level detail (cd1) coefficients of pressure achieving 96% sensitivity and 100% specificity while swallowing could be identified using cd2 thresholds of pressure with 95% sensitivity and 97% specificity. Male vocalizations could be identified using cd1 coefficients with 88% sensitivity and 100% specificity. For leaks at the mouthpiece, cd3 thresholds of flow could identify these events with 98% sensitivity and 99% specificity. Thus, this method provided an accurate, easy, and automated technique for detecting and removing artifacts from measurements of respiratory impedance using FOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26:R155–R199, 2005.

    Article  PubMed  Google Scholar 

  2. Bates, J. Lung Mechanics: An Inverse Modeling Approach. New York: Cambridge University Press, 2009.

    Book  Google Scholar 

  3. Bijaoui, E., P. F. Baconnier, and J. H. Bates. Mechanical output impedance of the lung determined from cardiogenic oscillations. J. Appl. Physiol. 91:859–865, 2001.

    PubMed  CAS  Google Scholar 

  4. Dellaca, R. L., N. Duffy, P. P. Pompilio, A. Aliverti, N. G. Koulouris, A. Pedotti, and P. M. Calverley. Expiratory flow limitation detected by forced oscillation and negative expiratory pressure. Eur. Respir. J. 29:363–374, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Diba, C., C. M. Salome, H. K. Reddel, C. W. Thorpe, B. Toelle, and G. G. King. Short-term variability of airway caliber—a marker of asthma? J. Appl. Physiol. 103:296–304, 2007.

    Article  PubMed  Google Scholar 

  6. Franken, H., J. Clement, and K. P. Van de Woestijne. Systematic and random errors in the determination of respiratory impedance by means of the forced oscillation technique: a theoretical study. IEEE Trans. Biomed. Eng. 30:642–651, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Frey, U., T. Brodbeck, A. Majumdar, D. R. Taylor, G. I. Town, M. Silverman, and B. Suki. Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 438:667–670, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Gimeno, F., L. T. van der Weele, G. H. Koeter, J. G. de Monchy, and R. van Altena. Variability of forced oscillation (Siemens Siregnost FD 5) measurements of total respiratory resistance in patients and healthy subjects. Ann. Allergy 71:56–60, 1993.

    PubMed  CAS  Google Scholar 

  9. Kandaswamy, A., C. S. Kumar, R. P. Ramanathan, S. Jayaraman, and N. Malmurugan. Neural classification of lung sounds using wavelet coefficients. Comput. Biol. Med. 34:523–537, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Khalil, M., and J. Duchene. Uterine EMG analysis: a dynamic approach for change detection and classification. IEEE Trans. Biomed. Eng. 47:748–756, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Lall, C. A., N. Cheng, P. Hernandez, P. T. Pianosi, Z. Dali, A. Abouzied, and G. N. Maksym. Airway resistance variability and response to bronchodilator in children with asthma. Eur. Respir. J. 30:260–268, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Landser, F. J., J. Clement, and K. P. Van de Woestijne. Normal values of total respiratory resistance and reactance determined by forced oscillations: influence of smoking. Chest 81:586–591, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Landser, F. J., J. Nagels, J. Clement, and K. P. Van de Woestijne. Errors in the measurement of total respiratory resistance and reactance by forced oscillations. Respir. Physiol. 28:289–301, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Landser, F. J., J. Nagles, M. Demedts, L. Billiet, and K. P. van de Woestijne. A new method to determine frequency characteristics of the respiratory system. J. Appl. Physiol. 41:101–106, 1976.

    PubMed  CAS  Google Scholar 

  15. Maki, B. E. Interpretation of the coherence function when using pseudorandom inputs to identify nonlinear systems. IEEE Trans. Biomed. Eng. 33:775–779, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Marchal, F., C. Schweitzer, B. Demoulin, C. Chone, and R. Peslin. Filtering artefacts in measurements of forced oscillation respiratory impedance in young children. Physiol. Meas. 25:1153–1166, 2004.

    Article  PubMed  Google Scholar 

  17. Michaelson, E. D., E. D. Grassman, and W. R. Peters. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest. 56:1210–1230, 1975.

    Article  PubMed  CAS  Google Scholar 

  18. Miller, M. R., J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P. van der Grinten, P. Gustafsson, R. Jensen, D. C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O. F. Pedersen, R. Pellegrino, G. Viegi, J. Wanger, and ATS/ERS Task Force. Standardisation of spirometry. Eur. Respir. J. 26:319–338, 2005.

    Article  PubMed  CAS  Google Scholar 

  19. Morris, J. F., A. Koski, and L. C. Johnson. Spirometric standards for healthy nonsmoking adults. Am. Rev. Respir. Dis. 103:57–67, 1971.

    PubMed  CAS  Google Scholar 

  20. Muskulus, M., A. M. Slats, P. J. Sterk, and S. Verduyn-Lunel. Fluctuations and determinism of respiratory impedance in asthma and chronic obstructive pulmonary disease. J. Appl. Physiol. 109:1582–1591, 2010.

    Article  PubMed  Google Scholar 

  21. Oostveen, E., D. MacLeod, H. Lorino, R. Farre, Z. Hantos, K. Desager, F. Marchal, and ERS Task Force on Respiratory Impedance Measurements. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur. Respir. J. 22:1026–1041, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Peslin, R., C. Duvivier, and C. Gallina. Total respiratory input and transfer impedances in humans. J. Appl. Physiol. 59:492–501, 1985.

    PubMed  CAS  Google Scholar 

  23. Petrosian, A., D. Prokhorov, R. Homan, R. Dasheiff, and D. Wunsch. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30:201–218, 2000.

    Article  Google Scholar 

  24. Que, C. L., C. M. Kenyon, R. Olivenstein, P. T. Macklem, and G. N. Maksym. Homeokinesis and short-term variability of human airway caliber. J. Appl. Physiol. 91:1131–1141, 2001.

    PubMed  CAS  Google Scholar 

  25. Robinson, P. D., M. Turner, N. J. Brown, C. Salome, N. Berend, G. B. Marks, and G. G. King. Procedures to improve the repeatability of forced oscillation measurements in school-aged children. Respir. Physiol. Neurobiol. 177:199–206, 2011.

    Article  PubMed  Google Scholar 

  26. Schuessler, T. F., and J. H. Bates. A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Schweitzer, C., C. Chone, and F. Marchal. Influence of data filtering on reliability of respiratory impedance and derived parameters in children. Pediatr. Pulmonol. 36:502–508, 2003.

    Article  PubMed  Google Scholar 

  28. Scott, R., and L. Grant. The assessment of cardiogenic interference on respiratory input impedance measurements and attempts to minimize effects using adaptive filtering. Eur. Respir. Rev. 4:126–129, 1994.

    Google Scholar 

  29. Timonen, K. L., J. T. Randell, R. O. Salonen, and J. Pekkanen. Short-term variations in oscillatory and spirometric lung function indices among school children. Eur. Respir. J. 10:82–87, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Van Noord, J. A., J. Clement, K. P. Van de Woestijne, and M. Demedts. Total respiratory resistance and reactance in patients with asthma, chronic bronchitis, and emphysema. Am. Rev. Respir. Dis. 143:922–927, 1991.

    Article  PubMed  Google Scholar 

  31. Zerah, F., A. M. Lorino, H. Lorino, A. Harf, and I. Macquin-Mavier. Forced oscillation technique vs spirometry to assess bronchodilatation in patients with asthma and COPD. Chest 108:41–47, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Scott Fulton for his assistance in spirometry measurements. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Operating Grant in partnership with an Atlantic Innovation Fund award from the Atlantic Canada Opportunities Agency (ACOA). S. A. Bhatawadekar was supported by the NSERC and the ACOA, D. Leary was supported by the Canadian Thoracic Society and Y. Chen was supported by the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff N. Maksym.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatawadekar, S.A., Leary, D., Chen, Y. et al. A Study of Artifacts and Their Removal During Forced Oscillation of the Respiratory System. Ann Biomed Eng 41, 990–1002 (2013). https://doi.org/10.1007/s10439-012-0735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0735-9

Keywords

Navigation