Skip to main content
Log in

A Long-Memory Model of Motor Learning in the Saccadic System: A Regime-Switching Approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Maintenance of movement accuracy relies on motor learning, by which prior errors guide future behavior. One aspect of this learning process involves the accurate generation of predictions of movement outcome. These predictions can, for example, drive anticipatory movements during a predictive-saccade task. Predictive saccades are rapid eye movements made to anticipated future targets based on error information from prior movements. This predictive process exhibits long-memory (fractal) behavior, as suggested by inter-trial fluctuations. Here, we model this learning process using a regime-switching approach, which avoids the computational complexities associated with true long-memory processes. The resulting model demonstrates two fundamental characteristics. First, long-memory behavior can be mimicked by a system possessing no true long-term memory, producing model outputs consistent with human-subjects performance. In contrast, the popular two-state model, which is frequently used in motor learning, cannot replicate these findings. Second, our model suggests that apparent long-term memory arises from the trade-off between correcting for the most recent movement error and maintaining consistent long-term behavior. Thus, the model surprisingly predicts that stronger long-memory behavior correlates to faster learning during adaptation (in which systematic errors drive large behavioral changes); greater apparent long-term memory indicates more effective incorporation of error from the cumulative history across trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West. Fractal Physiology. New York: Published for the American Physiological Society by Oxford University Press, 1994.

    Book  Google Scholar 

  2. Cheng, S., and P. N. Sabes. Modeling sensorimotor learning with linear dynamical systems. Neural Comput. 18:760–793, 2006.

    Article  PubMed  Google Scholar 

  3. Collins, J. J., and C. J. De Luca. Random walking during quiet standing. Phys. Rev. Lett. 73:764–767, 1994.

    Article  PubMed  Google Scholar 

  4. Collins, T., and J. Wallman. The relative importance of retinal error and prediction in saccadic adaptation. J. Neurophysiol. 107:3342–3348, 2012.

    Article  PubMed  Google Scholar 

  5. Criscimagna-Hemminger, S. E., A. J. Bastian, and R. Shadmehr. Size of error affects cerebellar contributions to motor learning. J. Neurophysiol. 103:2275–2284, 2010.

    Article  PubMed  Google Scholar 

  6. Davidson, P. R., and D. M. Wolpert. Scaling down motor memories: de-adaptation after motor learning. Neurosci. Lett. 370:102–107, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Diebold, F. X., and A. Inoue. Long memory and regime switching. J. Econom. 105:131–159, 2001.

    Article  Google Scholar 

  8. Floyer-Lea, A., and P. M. Matthews. Changing brain networks for visuomotor control with increased movement automaticity. J. Neurophysiol. 92:2405–2412, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Granger, C. W. J. Long memory relationships and the aggregation of dynamic models. J. Econom. 14:227–238, 1980.

    Article  Google Scholar 

  10. Hausdorff, J. M., C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78:349–358, 1995.

    PubMed  CAS  Google Scholar 

  11. Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116:770–808, 1951.

    Google Scholar 

  12. Hurst, H. E., R. P. Black, and Y. M. Samayka. Long-Term Storage: An Experimental Case Study. London: Constable, 1965.

    Google Scholar 

  13. Joiner, W. M., and M. Shelhamer. Responses to noisy periodic stimuli reveal properties of a neural predictor. J. Neurophysiol. 96:2121–2126, 2006.

    Article  PubMed  Google Scholar 

  14. Kording, K., J. B. Tenenbaum, and R. Shadmehr. Multiple timescales and uncertainty in motor adaptation. In: Advances in Neural Information Processing Systems, Vol. 19, edited by B. Scholkopf, J. Platt, and T. Hoffman. Cambridge, MA: MIT Press, 2007, pp. 745–752.

    Google Scholar 

  15. Leigh, R. J., and D. S. Zee. The Neurology of Eye Movements. New York: Oxford University Press, 2006.

    Google Scholar 

  16. Miller, J. M., T. Anstis, and W. B. Templeton. Saccadic plasticity: parametric adaptive control by retinal feedback. J. Exp. Psychol. Hum. Percept. Perform. 7:356–366, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Rangarajan, G., and M. Ding. Integrated approach to the assessment of long range correlation in time series data. Phys. Rev. E 61:4991–5001, 2000.

    Article  CAS  Google Scholar 

  18. Riley, M. A., and M. T. Turvey. Variability of determinism in motor behavior. J. Mot. Behav. 34:99–125, 2002.

    Article  PubMed  Google Scholar 

  19. Shelhamer, M., and W. M. Joiner. Saccades exhibit abrupt transition between reactive and predictive; predictive saccade sequences have long-term correlations. J. Neurophysiol. 90:2763–2769, 2003.

    Article  PubMed  Google Scholar 

  20. Slifkin, A. B., and K. M. Newell. Noise, information transmission, and force variability. J. Exp. Psychol. Hum. Percept. Perform. 25:837–851, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, M. A., A. Ghazizadeh, and R. Shadmehr. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4:e179, 2006.

    Article  PubMed  Google Scholar 

  22. Srimal, R., J. Diedrichsen, E. B. Ryklin, and C. E. Curtis. Obligatory adaptation of saccade gains. J. Neurophysiol. 99:1554–1558, 2008.

    Article  PubMed  Google Scholar 

  23. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30(5):869–888, 2011.

    Article  PubMed  Google Scholar 

  24. Wagenmakers, E. J., S. Farrell, and R. Ratcliff. Estimation and interpretation of 1/falpha noise in human cognition. Psychon. Bull. Rev. 11:579–615, 2004.

    Article  PubMed  Google Scholar 

  25. Wang, G. D., G. Antar, and P. Devynck. The Hurst exponent and long-time correlation. Phys. Plasmas 7:1181–1183, 2000.

    Article  CAS  Google Scholar 

  26. Wong, A. L., and M. Shelhamer. Exploring the fundamental dynamics of error-based motor learning using a stationary predictive-saccade task. PLoS ONE 6:e25225, 2011.

    Article  PubMed  CAS  Google Scholar 

  27. Wong, A. L., and M. Shelhamer. Saccade adaptation improves in response to a gradually introduced stimulus perturbation. Neurosci. Lett. 500:207–211, 2011.

    Article  PubMed  CAS  Google Scholar 

  28. Wong, A. L., and M. Shelhamer. Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. J. Neurophysiol. 105:1130–1140, 2011.

    Article  PubMed  Google Scholar 

  29. Zarahn, E., G. D. Weston, J. Liang, P. Mazzoni, and J. W. Krakauer. Explaining savings for visuomotor adaptation: linear time-invariant state-space models are not sufficient. J. Neurophysiol. 100:2537–2548, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Grant BCS-0615106, NIH Grant R21-EY019713, and NIH Grant T32 DC000023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron L. Wong.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.L., Shelhamer, M. A Long-Memory Model of Motor Learning in the Saccadic System: A Regime-Switching Approach. Ann Biomed Eng 41, 1613–1624 (2013). https://doi.org/10.1007/s10439-012-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0669-2

Keywords

Navigation