Skip to main content
Log in

Analysis of Fluid Flow and Wall Shear Stress Patterns Inside Partially Filled Agitated Culture Well Plates

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these “super bugs”, is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Abelson, A., and M. Denny. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst. 28:317–339, 1997.

    Article  Google Scholar 

  2. Azevedo, N. F., A. R. Pinto, N. Reis, C. W. Keevil, and M. J. Vieira. Shear stress, temperature and inoculation concentration influence on the adhesion of water-stressed Helicobacter pylori to stainless steel 304. Appl. Environ. Microbiol. 72:2936–2941, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Berson, R. E., M. R. Purcell, and M. K. Sharp. Computationally determined shear on cells grown in orbiting culture dishes. Adv. Exp. Med. Biol. 614:189–198, 2008.

    Article  PubMed  Google Scholar 

  4. Bryers, J. D. Medical biofilms. Biotechnol. Bioeng. 100:1–18, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Byrd, J. J., and T. M. Powledge. The Complete Idiots Guide to Microbiology. New York: Alpha, pp. 197–201, 2006.

    Google Scholar 

  6. Chen, M. J., Z. Zhang, and T. R. Bott. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloids Surf. B 43:61–71, 2005.

    Article  CAS  Google Scholar 

  7. Dardik, A., L. Chen, J. Frattini, H. Asada, F. Haziz, F. Kudo, and B. Sumpio. Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc. Surg. 41(5):869–880, 2005.

    Article  PubMed  Google Scholar 

  8. Donlan, R., and J. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–193, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Fluent Manual, Fluent 6.3 FLUENT Inc., 2006.

  10. Greenspan, H. P., and L. N. Howard. On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17:385–404, 1963.

    Article  Google Scholar 

  11. Greenspan, H. P. On the general theory of contained rotating fluid motion. J. Fluid Mech. 22(3):449–462, 1965.

    Article  Google Scholar 

  12. Haga, M., A. Yamashita, J. Paszkowiak, B. E. Sumpio, and A. Dardik. Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J. Vasc. Surg. 37(6):1277–1284, 2003.

    Article  PubMed  Google Scholar 

  13. Hopfinger, E. J., F. K. Browand, and Y. Gagne. Turbulence and waves in rotating tanks. J. Fluid Mech. 125:505–534, 1982.

    Article  Google Scholar 

  14. Hopfinger, E. J., and G. J. F. van Heijst. Vortices in rotating fluids. Ann. Rev. Fluid Mech. 25:241–289, 1993.

    Article  Google Scholar 

  15. Kostenko, V., M. M. Salek, P. Sattari, and R. J. Martinuzzi. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels. FEMS Immunol. Med. Microbiol. 59:421–431, 2010.

    PubMed  CAS  Google Scholar 

  16. Kraiss, L. W., A. S. Weyrich, N. M. Alto, D. A. Dixon, T. M. Ennis, V. Modur, T. M. McIntyre, S. M. Prescott, and G. S. Zimmerman. Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 278:H1537–H1544, 2000.

    PubMed  CAS  Google Scholar 

  17. Ley, K., E. Lundgren, E. M. Berger, and K.-E. Arfors. Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate. Blood 73:1324–1330, 1989.

    PubMed  CAS  Google Scholar 

  18. MacLeod, S. M., and D. J. Stickler. Species interactions in mixed-community crystalline biofilms on urinary catheters. Med. Microbiol. 56(Pt 11):1549–1557, 2007.

    Article  Google Scholar 

  19. Meda, M. S., A. J. Lopez, and A. Guyot. Candida inferior vena cava filter infection and septic thrombophlebitis. Br. J. Radiol. 80(950):e48–e49, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Murray, T. S., M. Egan, and B. I. Kazmierczak. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19(1):83–88, 2007.

    Article  PubMed  Google Scholar 

  21. Percival, S. L., and P. G. Bowler. Biofilms and their potential role in wound healing. Wounds 16:234–240, 2004.

    Google Scholar 

  22. Phillips, P. L., E. Sampson, Q. Yang, P. Antonelli, A. Progulske-Fox, and G. Schultz. Bacterial biofilms in wounds. Wound Healing South Afr. 1:10–12, 2008.

    Google Scholar 

  23. Presterl, E., A. Lassnigg, M. Eder, S. Reichmann, A. M. Hirschl, and W. Graninger. Effects of tigecycline, linezolid and vancomycin on biofilms of viridans streptococci isolates from patients with endocarditis. Int. J. Artif. Organs 30(9):798–804, 2007.

    PubMed  CAS  Google Scholar 

  24. Purevdorj, B., J. W. Costerton, and P. Stoodley. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68:4457–4464, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Salek, M. M., S. Jones, and R. J. Martinuzzi. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Biofouling 25:711–725, 2009.

    Article  PubMed  Google Scholar 

  26. Sattari, P. Design and Fabrication of an Optical Non-intrusive Shear Rate Sensor. M.Sc. Thesis, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2008.

  27. Sherman, F. S. Viscous Flow. New York: McGraw-Hill, pp. 140–141, 1990.

    Google Scholar 

  28. Sillankorva, S., P. Neubauer, and J. Azeredo. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol. 8:79, 2008.

    Article  PubMed  Google Scholar 

  29. Simões, M., M. O. Pereira, S. Sillankorva, J. Azeredo, and M. J. Vieira. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23:249–258, 2007.

    Article  PubMed  Google Scholar 

  30. Simões, M., M. O. Pereira, and M. J. Vieira. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens. Water Sci. Technol. 55:437–445, 2007.

    Article  PubMed  Google Scholar 

  31. Sousa, C., M. Henriques, J. Azeredo, P. Teixeira, and R. Oliveira. Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World J. Microbiol. Biotechnol. 24:423–426, 2008.

    Article  CAS  Google Scholar 

  32. Stoodley, P., I. Dodds, J. D. Boyle, and H. M. Lappin-Scott. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85:S19–S28, 1999.

    Article  Google Scholar 

  33. White, F. M. Fluid Mechanics (6th ed.). New York: McGraw-Hill, pp. 164–166, 2008.

    Google Scholar 

  34. Wilson, D. W., J. A. Scalf, S. Forouhar, R. Muller, F. Taugwalder, M. Gharib, D. Fourguette, and D. Modarress. Diffractive optic fluid shear stress sensor. In: Trends in Optics and Photonics, Diffractive Optics and Micro-Optics, Vol. 41, edited by T. Li. Washington, DC: Optical Society of America, 2000, pp. 306–308.

    Google Scholar 

  35. Youngs, D. L. Time-dependent multi-material flow with large fluid distortion. In: Numerical Methods for Fluid Dynamics, edited by K. W. Morton, and M. J. Baines. New York: Academic, 1982.

    Google Scholar 

Download references

Acknowledgments

The authors recognize valuable discussions with Dr. Victoria Kostenko. M. Mehdi Salek would like to acknowledge Alberta Ingenuity Fund (AIF), now part of Alberta Innovates Technology Futures for their support through a scholarship. This research has been enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Martinuzzi.

Additional information

Associate Editor Konstantinos Konstantopoulo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salek, M.M., Sattari, P. & Martinuzzi, R.J. Analysis of Fluid Flow and Wall Shear Stress Patterns Inside Partially Filled Agitated Culture Well Plates. Ann Biomed Eng 40, 707–728 (2012). https://doi.org/10.1007/s10439-011-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0444-9

Keywords

Navigation