Skip to main content
Log in

Overview of Tracheal Tissue Engineering: Clinical Need Drives the Laboratory Approach

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Breathing is a natural function that most of us do not even think about, but for those who suffer from disease or damage of the trachea, the obstruction of breathing can mean severe restrictions to quality of life or may even be fatal. Replacement and reconstruction of the trachea is one of the most difficult procedures in otolaryngology/head and neck surgery, and also one of the most vital. Previous reviews have focused primarily on clinical perspectives or instead on engineering strategies. However, the current review endeavors to bridge this gap by evaluating engineering approaches in a practical clinical context. For example, although contemporary approaches often include in vitro bioreactor pre-culture, or sub-cutaneous in vivo conditioning, the limitations they present in terms of regulatory approval, cost, additional surgery, and/or risk of infection challenge engineers to develop the next generation of biodegradable/resorbable biomaterials that can be directly implanted in situ. Essentially, the functionality of the replacement is the most important requirement. It must be the correct shape and size, achieve an airtight fit, resist collapse as it is replaced by new tissue, and be non-immunogenic. As we look to the future, there will be no one-size-fits-all solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asnaghi, A., P. Macchiarini, and S. Mantero. Tissue engineering toward organ replacement: a promising approach in airway transplant. Int. J. Artif. Organs 32:763–768, 2009.

    PubMed  Google Scholar 

  2. Bader, A., and P. Macchiarini. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J. Cell Mol. Med. 14:1877–1889, 2010.

    Article  PubMed  CAS  Google Scholar 

  3. Baiguera, S., M. A. Birchall, and P. Macchiarini. Tissue-engineered tracheal transplantation. Transplantation 89:485–491, 2010.

    Article  PubMed  Google Scholar 

  4. Barry, C. Doctors: Transplant Advance in Windpipe Cancer. Associated Press. July 30, 2010. URL: http://abcnews.go.com/Health/Wellness/wireStory?id=11288335.

  5. Bucheler, M., and A. Haisch. Tissue engineering in otorhinolaryngology. DNA Cell Biol. 22:549–564, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Coraux, C., B. Nawrocki-Raby, J. Hinnrasky, C. Kileztky, D. Gaillard, C. Dani, and E. Puchelle. Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell Mol. Biol. 32:87–92, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Delaere, P. Stem-cell “hype” in tracheal transplantation? Transplantation 90:927–928, 2010; (author reply 928–929).

    Article  PubMed  Google Scholar 

  8. Delaere, P., J. Vranckx, G. Verleden, P. De Leyn, and D. Van Raemdonck. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N. Engl. J. Med. 362:138–145, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Doolin, E. J., L. F. Strande, X. Sheng, and C. W. Hewitt. Engineering a composite neotrachea with surgical adhesives. J. Pediatr. Surg. 37:1034–1037, 2002.

    Article  PubMed  Google Scholar 

  10. Dormer, N. H., M. Singh, L. Wang, C. J. Berkland, and M. S. Detamore. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng. 38:2167–2182, 2010.

    Article  PubMed  Google Scholar 

  11. Doss, A. E., S. S. Dunn, K. A. Kucera, L. A. Clemson, and J. B. Zwischenberger. Tracheal replacements: Part 2. ASAIO J. 53:631–639, 2007.

    Article  PubMed  Google Scholar 

  12. Fuchs, J. R., D. Hannouche, S. Terada, J. P. Vacanti, and D. O. Fauza. Fetal tracheal augmentation with cartilage engineered from bone marrow-derived mesenchymal progenitor cells. J. Pediatr. Surg. 38:984–987, 2003.

    Article  PubMed  Google Scholar 

  13. Fuchs, J. R., S. Terada, E. R. Ochoa, J. P. Vacanti, and D. O. Fauza. Fetal tissue engineering: in utero tracheal augmentation in an ovine model. J. Pediatr. Surg. 37:1000–1006, 2002; (discussion 1000–1006).

    Article  PubMed  Google Scholar 

  14. Gerek, M. Laryngotracheal reconstruction update. Curr. Opin. Otolaryngol. Head Neck Surg. 9:209–213, 2001.

    Article  Google Scholar 

  15. Gilbert, T. W., S. Gilbert, M. Madden, S. D. Reynolds, and S. F. Badylak. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann. Thorac. Surg. 86:967–974, 2008; (discussion 967–974).

    Article  PubMed  Google Scholar 

  16. Gilpin, D. A., M. S. Weidenbecher, and J. E. Dennis. Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction. Laryngoscope 120:612–617, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Go, T., P. Jungebluth, S. Baiguero, A. Asnaghi, J. Martorell, H. Ostertag, S. Mantero, M. Birchall, A. Bader, and P. Macchiarini. Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J. Thorac. Cardiovasc. Surg. 139:437–443, 2010.

    Article  PubMed  CAS  Google Scholar 

  18. Goto, Y., Y. Noguchi, A. Nomura, T. Sakamoto, Y. Ishii, S. Bitoh, C. Picton, Y. Fujita, T. Watanabe, S. Hasegawa, and Y. Uchida. In vitro reconstitution of the tracheal epithelium. Am. J. Respir. Cell Mol. Biol. 20:312–318, 1999.

    PubMed  CAS  Google Scholar 

  19. Grillo, H. C. Tracheal replacement: a critical review. Ann. Thorac. Surg. 73:1995–2004, 2002.

    Article  PubMed  Google Scholar 

  20. Grillo, H. C. Development of tracheal surgery: a historical review. Part 1: techniques of tracheal surgery. Ann. Thorac. Surg. 75:610–619, 2003.

    Article  PubMed  Google Scholar 

  21. Grillo, H. C. Tracheal replacement. J. Thorac. Cardiovasc. Surg. 125:975, 2003.

    PubMed  Google Scholar 

  22. Grimmer, J. F., C. B. Gunnlaugsson, E. Alsberg, H. S. Murphy, H. J. Kong, D. J. Mooney, and R. A. Weatherly. Tracheal reconstruction using tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg. 130:1191–1196, 2004.

    Article  PubMed  Google Scholar 

  23. Henderson, J. H., J. F. Welter, J. M. Mansour, C. Niyibizi, A. I. Caplan, and J. E. Dennis. Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit. Tissue Eng. 13:843–853, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Holt, P. G., M. A. Schon-Hegrad, M. J. Phillips, and P. G. McMenamin. Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium. Clin. Exp. Allergy 19:597–601, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Igai, H., S. S. Chang, M. Gotoh, Y. Yamamoto, M. Yamamoto, Y. Tabata, and H. Yokomise. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2. ASAIO J. 54:104–108, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Jungebluth, P., T. Go, A. Asnaghi, S. Bellini, J. Martorell, C. Calore, L. Urbani, H. Ostertag, S. Mantero, M. T. Conconi, and P. Macchiarini. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J. Thorac. Cardiovasc. Surg. 138:586–593, 2009; (discussion 592–593).

    Article  PubMed  CAS  Google Scholar 

  27. Kalathur, M., S. Baiguera, and P. Macchiarini. Translating tissue-engineered tracheal replacement from bench to bedside. Cell. Mol. Life Sci. 67(24):4185–4196, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Kamil, S. H., R. D. Eavey, M. P. Vacanti, C. A. Vacanti, and C. J. Hartnick. Tissue-engineered cartilage as a graft source for laryngotracheal reconstruction: a pig model. Arch. Otolaryngol. Head Neck Surg. 130:1048–1051, 2004.

    Article  PubMed  Google Scholar 

  29. Kanzaki, M., M. Yamato, H. Hatakeyama, C. Kohno, J. Yang, T. Umemoto, A. Kikuchi, T. Okano, and T. Onuki. Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng. 12:1275–1283, 2006.

    Article  PubMed  Google Scholar 

  30. Kim, J. H., J. Kim, W. H. Kong, and S. W. Seo. Factors affecting tissue culture and transplantation using omentum. ASAIO J. 56:349–355, 2010.

    PubMed  Google Scholar 

  31. Kim, D. Y., J. Pyun, J. W. Choi, J. H. Kim, J. S. Lee, H. A. Shin, H. J. Kim, H. N. Lee, B. H. Min, H. E. Cha, and C. H. Kim. Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Laryngoscope 120:30–38, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Kojima, K., L. J. Bonassar, R. A. Ignotz, K. Syed, J. Cortiella, and C. A. Vacanti. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann. Thorac. Surg. 76:1884–1888, 2003.

    Article  PubMed  Google Scholar 

  33. Kojima, K., L. J. Bonassar, A. K. Roy, H. Mizuno, J. Cortiella, and C. A. Vacanti. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J. 17:823–828, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Kojima, K., L. J. Bonassar, A. K. Roy, C. A. Vacanti, and J. Cortiella. Autologous tissue-engineered trachea with sheep nasal chondrocytes. J. Thorac. Cardiovasc. Surg. 123:1177–1184, 2002.

    Article  PubMed  Google Scholar 

  35. Kojima, K., R. A. Ignotz, T. Kushibiki, K. W. Tinsley, Y. Tabata, and C. A. Vacanti. Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor beta2 released from biodegradable microspheres in a nude rat recipient. J. Thorac. Cardiovasc. Surg. 128:147–153, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Komura, M., H. Komura, Y. Kanamori, Y. Tanaka, K. Suzuki, M. Sugiyama, S. Nakahara, H. Kawashima, A. Hatanaka, K. Hoshi, Y. Ikada, Y. Tabata, and T. Iwanaka. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. J. Pediatr. Surg. 43:2141–2146, 2008.

    Article  PubMed  Google Scholar 

  37. Komura, M., H. Komura, Y. Tanaka, Y. Kanamori, M. Sugiyama, S. Nakahara, H. Kawashima, K. Suzuki, K. Hoshi, and T. Iwanaka. Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments: the first feasibility study in an in vivo culture system. Pediatr. Surg. Int. 24:1117–1121, 2008.

    Article  PubMed  Google Scholar 

  38. Kucera, K. A., A. E. Doss, S. S. Dunn, L. A. Clemson, and J. B. Zwischenberger. Tracheal replacements: part 1. ASAIO J. 53:497–505, 2007.

    Article  PubMed  Google Scholar 

  39. Kunisaki, S. M., D. A. Freedman, and D. O. Fauza. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J. Pediatr. Surg. 41:675–682, 2006; (discussion 675–682).

    Article  PubMed  Google Scholar 

  40. Lee, C. J., K. D. Moon, H. Choi, J. I. Woo, B. H. Min, and K. B. Lee. Tissue engineered tracheal prosthesis with acceleratedly cultured homologous chondrocytes as an alternative of tracheal reconstruction. J. Cardiovasc. Surg. (Torino) 43:275–279, 2002.

    CAS  Google Scholar 

  41. Liechty, K. W., T. C. MacKenzie, A. F. Shaaban, A. Radu, A. M. Moseley, R. Deans, D. R. Marshak, and A. W. Flake. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6:1282–1286, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Lin, C. H., S. H. Hsu, C. E. Huang, W. T. Cheng, and J. M. Su. A scaffold-bioreactor system for a tissue-engineered trachea. Biomaterials 30:4117–4126, 2009.

    Article  PubMed  CAS  Google Scholar 

  43. Lin, C. H., J. M. Su, and S. H. Hsu. Evaluation of type II collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea. Tissue Eng. Part C Methods 14:69–77, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Luo, X., G. Zhou, W. Liu, W. J. Zhang, L. Cen, L. Cui, and Y. Cao. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed. Mater. 4:025006, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Lusk, R. P., D. R. Kang, and H. R. Muntz. Auricular cartilage grafts in laryngotracheal reconstruction. Ann. Otol. Rhinol. Laryngol. 102:247–254, 1993.

    PubMed  CAS  Google Scholar 

  46. Macchiarini, M. P. Airway transplantation: a debate worth having? Transplantation 85:1075–1080, 2008.

    Article  PubMed  Google Scholar 

  47. Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.

    Article  PubMed  Google Scholar 

  48. Macchiarini, P., T. Walles, C. Biancosino, and H. Mertsching. First human transplantation of a bioengineered airway tissue. J. Thorac. Cardiovasc. Surg. 128:638–641, 2004.

    Article  PubMed  Google Scholar 

  49. Matloub, H. S., and P. Yu. Engineering a composite neotrachea in a rat model. Plast. Reconstr. Surg. 117:123–128, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Mertsching, H., T. Walles, M. Hofmann, J. Schanz, and W. H. Knapp. Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials 26:6610–6617, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    Article  PubMed  CAS  Google Scholar 

  52. Moroni, L., M. Curti, M. Welti, S. Korom, W. Weder, J. R. de Wijn, and C. A. van Blitterswijk. Anatomical 3D fiber-deposited scaffolds for tissue engineering: designing a neotrachea. Tissue Eng. 13:2483–2493, 2007.

    Article  PubMed  CAS  Google Scholar 

  53. Nakamura, T., T. Sato, M. Araki, S. Ichihara, A. Nakada, M. Yoshitani, S. Itoi, M. Yamashita, S. Kanemaru, K. Omori, Y. Hori, K. Endo, Y. Inada, and K. Hayakawa. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J. Thorac. Cardiovasc. Surg. 138:811–819, 2009.

    Article  PubMed  Google Scholar 

  54. Nakamura, T., M. Teramachi, T. Sekine, R. Kawanami, S. Fukuda, M. Yoshitani, T. Toba, H. Ueda, Y. Hori, M. Inoue, K. Shigeno, T. N. Taka, Y. Liu, N. Tamura, and Y. Shimizu. Artificial trachea and long term follow-up in carinal reconstruction in dogs. Int. J. Artif. Organs 23:718–724, 2000.

    PubMed  CAS  Google Scholar 

  55. Neville, W. E., J. P. Bolanowski, and G. G. Kotia. Clinical experience with the silicone tracheal prosthesis. J. Thorac. Cardiovasc. Surg. 99:604–612, 1990; (discussion 612–613).

    PubMed  CAS  Google Scholar 

  56. Ni, Y., X. Zhao, L. Zhou, Z. Shao, W. Yan, X. Chen, Z. Cao, Z. Xue, and J. J. Jiang. Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair. Otolaryngol. Head Neck Surg. 139:256–261, 2008.

    Article  PubMed  Google Scholar 

  57. Nomoto, Y., K. Kobayashi, Y. Tada, I. Wada, T. Nakamura, and K. Omori. Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea. Ann. Otol. Rhinol. Laryngol. 117:59–64, 2008.

    PubMed  Google Scholar 

  58. Nomoto, Y., T. Suzuki, Y. Tada, K. Kobayashi, M. Miyake, A. Hazama, I. Wada, S. Kanemaru, T. Nakamura, and K. Omori. Tissue engineering for regeneration of the tracheal epithelium. Ann. Otol. Rhinol. Laryngol. 115:501–506, 2006.

    PubMed  Google Scholar 

  59. Ohara, K., K. Nakamura, and E. Ohta. Chest wall deformities and thoracic scoliosis after costal cartilage graft harvesting. Plast. Reconstr. Surg. 99:1030–1036, 1997.

    Article  PubMed  CAS  Google Scholar 

  60. Okumura, N., M. Teramachi, Y. Takimoto, T. Nakamura, Y. Ikada, and Y. Shimizu. Experimental reconstruction of the intrathoracic trachea using a new prosthesis made from collagen grafted mesh. ASAIO J. 40:M834–M839, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Omori, K., T. Nakamura, S. Kanemaru, R. Asato, M. Yamashita, S. Tanaka, A. Magrufov, J. Ito, and Y. Shimizu. Regenerative medicine of the trachea: the first human case. Ann. Otol. Rhinol. Laryngol. 114:429–433, 2005.

    PubMed  Google Scholar 

  62. Omori, K., T. Nakamura, S. Kanemaru, H. Kojima, A. Magrufov, Y. Hiratsuka, and Y. Shimizu. Cricoid regeneration using in situ tissue engineering in canine larynx for the treatment of subglottic stenosis. Ann. Otol. Rhinol. Laryngol. 113:623–627, 2004.

    PubMed  Google Scholar 

  63. Omori, K., T. Nakamura, S. Kanemaru, A. Magrufov, M. Yamashita, and Y. Shimizu. In situ tissue engineering of the cricoid and trachea in a canine model. Ann. Otol. Rhinol. Laryngol. 117:609–613, 2008.

    PubMed  Google Scholar 

  64. Omori, K., Y. Tada, T. Suzuki, Y. Nomoto, T. Matsuzuka, K. Kobayashi, T. Nakamura, S. Kanemaru, M. Yamashita, and R. Asato. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann. Otol. Rhinol. Laryngol. 117:673–678, 2008.

    PubMed  Google Scholar 

  65. Osada, H., S. Takeuchi, K. Kojima, and N. Yamate. The first step of experimental study on hybrid trachea: use of cultured fibroblasts with artificial matrix. J. Cardiovasc. Surg. (Torino) 35:165–168, 1994.

    CAS  Google Scholar 

  66. Pfenninger, C., I. Leinhase, M. Endres, N. Rotter, A. Loch, J. Ringe, and M. Sittinger. Tracheal remodeling: comparison of different composite cultures consisting of human respiratory epithelial cells and human chondrocytes. In Vitro Cell Dev. Biol. Anim. 43:28–36, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211, 2006.

    Article  PubMed  CAS  Google Scholar 

  68. Remlinger, N. T., C. A. Czajka, M. E. Juhas, D. A. Vorp, D. B. Stolz, S. F. Badylak, S. Gilbert, and T. W. Gilbert. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 31:3520–3526, 2010.

    Article  PubMed  CAS  Google Scholar 

  69. Risbud, M., M. Endres, J. Ringe, R. Bhonde, and M. Sittinger. Biocompatible hydrogel supports the growth of respiratory epithelial cells: possibilities in tracheal tissue engineering. J. Biomed. Mater. Res. 56:120–127, 2001.

    Article  PubMed  CAS  Google Scholar 

  70. Roomans, G. M. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur. Cell Mater. 19:284–299, 2010.

    PubMed  CAS  Google Scholar 

  71. Ruszymah, B. H., K. Chua, M. A. Latif, F. N. Hussein, and A. B. Saim. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int. J. Pediatr. Otorhinolaryngol. 69:1489–1495, 2005.

    Article  PubMed  Google Scholar 

  72. Sakata, J., C. A. Vacanti, B. Schloo, G. B. Healy, R. Langer, and J. P. Vacanti. Tracheal composites tissue engineered from chondrocytes, tracheal epithelial cells, and synthetic degradable scaffolding. Transpl. Proc. 26:3309–3310, 1994.

    CAS  Google Scholar 

  73. Sato, T., M. Araki, N. Nakajima, K. Omori, and T. Nakamura. Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J. Thorac. Cardiovasc. Surg. 139:26–31, 2010.

    Article  PubMed  CAS  Google Scholar 

  74. Sato, T., and T. Nakamura. Tissue-engineered airway replacement. Lancet 372:2003–2004, 2008.

    Article  PubMed  Google Scholar 

  75. Schanz, J., J. Pusch, J. Hansmann, and H. Walles. Vascularised human tissue models: a new approach for the refinement of biomedical research. J. Biotechnol. 148(1):56–63, 2010.

    Article  PubMed  CAS  Google Scholar 

  76. Seguin, A., D. Radu, M. Holder-Espinasse, P. Bruneval, A. Fialaire-Legendre, M. Duterque-Coquillaud, A. Carpentier, and E. Martinod. Tracheal replacement with cryopreserved, decellularized, or glutaraldehyde-treated aortic allografts. Ann. Thorac. Surg. 87:861–867, 2009.

    Article  PubMed  Google Scholar 

  77. Sekine, T., T. Nakamura, H. Ueda, K. Matsumoto, Y. Yamamoto, Y. Takimoto, T. Kiyotani, and Y. Shimizu. Replacement of the tracheobronchial bifurcation by a newly developed Y-shaped artificial trachea. ASAIO J. 45:131–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  78. Shinoka, T., D. Shum-Tim, P. X. Ma, R. E. Tanel, N. Isogai, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115:536–545, 1998; (discussion 545–546).

    Article  PubMed  CAS  Google Scholar 

  79. Shoichet, M. S. Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591, 2009.

    Article  CAS  Google Scholar 

  80. Suzuki, T., K. Kobayashi, Y. Tada, Y. Suzuki, I. Wada, T. Nakamura, and K. Omori. Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann. Otol. Rhinol. Laryngol. 117:453–463, 2008.

    PubMed  Google Scholar 

  81. Tada, Y., T. Suzuki, T. Takezawa, Y. Nomoto, K. Kobayashi, T. Nakamura, and K. Omori. Regeneration of tracheal epithelium utilizing a novel bipotential collagen scaffold. Ann. Otol. Rhinol. Laryngol. 117:359–365, 2008.

    PubMed  Google Scholar 

  82. Tan, Q., A. M. El-Badry, C. Contaldo, R. Steiner, S. Hillinger, M. Welti, M. Hilbe, D. R. Spahn, R. Jaussi, G. Higuera, C. A. van Blitterswijk, Q. Luo, and W. Weder. The effect of perfluorocarbon-based artificial oxygen carriers on tissue-engineered trachea. Tissue Eng. A 15:2471–2480, 2009.

    Article  CAS  Google Scholar 

  83. Tan, Q., S. Hillinger, C. A. van Blitterswijk, and W. Weder. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interact. Cardiovasc. Thorac. Surg. 8:27–30, 2009.

    Article  PubMed  Google Scholar 

  84. Tan, Q., R. Steiner, S. P. Hoerstrup, and W. Weder. Tissue-engineered trachea: history, problems and the future. Eur. J. Cardiothorac. Surg. 30:782–786, 2006.

    Article  PubMed  Google Scholar 

  85. Tan, Q., R. Steiner, L. Yang, M. Welti, P. Neuenschwander, S. Hillinger, and W. Weder. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea. Eur. J. Cardiothorac. Surg. 31:806–811, 2007.

    Article  PubMed  Google Scholar 

  86. Tani, G., N. Usui, M. Kamiyama, T. Oue, and M. Fukuzawa. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering. Pediatr. Surg. Int. 26:179–185, 2010.

    Article  PubMed  Google Scholar 

  87. ten Hallers, E. J., G. Rakhorst, H. A. Marres, J. A. Jansen, T. G. van Kooten, H. K. Schutte, J. P. van Loon, E. B. van der Houwen, and G. J. Verkerke. Animal models for tracheal research. Biomaterials 25:1533–1543, 2004.

    Article  PubMed  CAS  Google Scholar 

  88. Teramachi, M., T. Nakamura, Y. Yamamoto, T. Kiyotani, Y. Takimoto, and Y. Shimizu. Porous-type tracheal prosthesis sealed with collagen sponge. Ann. Thorac. Surg. 64:965–969, 1997.

    Article  PubMed  CAS  Google Scholar 

  89. Thomson, H. G., T. Y. Kim, and S. H. Ein. Residual problems in chest donor sites after microtia reconstruction: a long-term study. Plast. Reconstr. Surg. 95:961–968, 1995.

    Article  PubMed  CAS  Google Scholar 

  90. Toomes, H., G. Mickisch, and I. Vogt-Moykopf. Experiences with prosthetic reconstruction of the trachea and bifurcation. Thorax 40:32–37, 1985.

    Article  PubMed  CAS  Google Scholar 

  91. Tsukada, H., S. Matsuda, H. Inoue, Y. Ikada, and H. Osada. Comparison of bioabsorbable materials for use in artificial tracheal grafts. Interact. Cardiovasc. Thorac. Surg. 8:225–229, 2009.

    Article  PubMed  Google Scholar 

  92. Vacanti, C. A., K. T. Paige, W. S. Kim, J. Sakata, J. Upton, and J. P. Vacanti. Experimental tracheal replacement using tissue-engineered cartilage. J. Pediatr. Surg. 29:201–204, 1994; (discussion 204–205).

    Article  PubMed  CAS  Google Scholar 

  93. von der Mark, K., V. Gauss, H. von der Mark, and P. Muller. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532, 1977.

    Article  Google Scholar 

  94. Walles, T., B. Giere, M. Hofmann, J. Schanz, F. Hofmann, H. Mertsching, and P. Macchiarini. Experimental generation of a tissue-engineered functional and vascularized trachea. J. Thorac. Cardiovasc. Surg. 128:900–906, 2004.

    PubMed  Google Scholar 

  95. Walles, T., B. Giere, P. Macchiarini, and H. Mertsching. Expansion of chondrocytes in a three-dimensional matrix for tracheal tissue engineering. Ann. Thorac. Surg. 78:444–448, 2004; (discussion 448–449).

    Article  PubMed  Google Scholar 

  96. Weidenbecher, M., J. H. Henderson, H. M. Tucker, J. Z. Baskin, A. Awadallah, and J. E. Dennis. Hyaluronan-based scaffolds to tissue-engineer cartilage implants for laryngotracheal reconstruction. Laryngoscope 117:1745–1749, 2007.

    Article  PubMed  CAS  Google Scholar 

  97. Weidenbecher, M., H. M. Tucker, A. Awadallah, and J. E. Dennis. Fabrication of a neotrachea using engineered cartilage. Laryngoscope 118:593–598, 2008.

    Article  PubMed  Google Scholar 

  98. Weidenbecher, M., H. M. Tucker, D. A. Gilpin, and J. E. Dennis. Tissue-engineered trachea for airway reconstruction. Laryngoscope 119:2118–2123, 2009.

    Article  PubMed  Google Scholar 

  99. Windpipe Transplant Success in UK Child. BBC News. March 19, 2010. URL: http://news.bbc.co.uk/2/hi/8576493.stm.

  100. Wu, W., X. Cheng, Y. Zhao, F. Chen, X. Feng, and T. Mao. Tissue engineering of trachea-like cartilage grafts by using chondrocyte macroaggregate: experimental study in rabbits. Artif. Organs 31:826–834, 2007.

    Article  PubMed  Google Scholar 

  101. Wu, W., X. Feng, T. Mao, H. W. Ouyang, G. Zhao, and F. Chen. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br. J. Oral Maxillofac. Surg. 45:272–278, 2007.

    Article  PubMed  Google Scholar 

  102. Wu, W., Y. Liu, and Y. Zhao. Clinical transplantation of a tissue-engineered airway. Lancet 373:717, 2009; (author reply 718–719).

    Article  PubMed  Google Scholar 

  103. Yamamoto, Y., T. Okamoto, M. Goto, H. Yokomise, M. Yamamoto, and Y. Tabata. Experimental study of bone morphogenetic proteins-2 slow release from an artificial trachea made of biodegradable materials: evaluation of stenting time. ASAIO J. 49:533–536, 2003.

    Article  PubMed  CAS  Google Scholar 

  104. Yamashita, M., S. Kanemaru, S. Hirano, A. Magrufov, H. Tamaki, Y. Tamura, M. Kishimoto, K. Omori, T. Nakamura, and J. Ito. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope 117:497–502, 2007.

    Article  PubMed  Google Scholar 

  105. Yanagi, M., A. Kishida, T. Shimotakahara, H. Matsumoto, H. Nishijima, M. Akashi, and T. Aikou. Experimental study of bioactive polyurethane sponge as an artificial trachea. ASAIO J. 40:M412–M418, 1994.

    Article  PubMed  CAS  Google Scholar 

  106. Yang, L., S. Korom, M. Welti, S. P. Hoerstrup, G. Zund, F. J. Jung, P. Neuenschwander, and W. Weder. Tissue engineered cartilage generated from human trachea using DegraPol scaffold. Eur. J. Cardiothorac. Surg. 24:201–207, 2003.

    Article  PubMed  CAS  Google Scholar 

  107. Zani, B. G., K. Kojima, C. A. Vacanti, and E. R. Edelman. Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proc. Natl. Acad. Sci. USA 105:7046–7051, 2008.

    Article  PubMed  CAS  Google Scholar 

  108. Zhang, J. R., F. L. Chen, W. Wu, J. H. Wei, X. H. Feng, and T. Q. Mao. Constructing tissue engineered trachea-like cartilage graft in vitro by using bone marrow stromal cells sheet and PLGA internal support: experimental study in bioreactor. Zhonghua Zheng Xing Wai Ke Za Zhi 25:124–128, 2009.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the NSF CAREER Award (MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Detamore.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, L.M., Weatherly, R.A. & Detamore, M.S. Overview of Tracheal Tissue Engineering: Clinical Need Drives the Laboratory Approach. Ann Biomed Eng 39, 2091–2113 (2011). https://doi.org/10.1007/s10439-011-0318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0318-1

Keywords

Navigation