Skip to main content
Log in

Electrocardiogram Signals to Assess Zebrafih Heart Regeneration: Implication of Long QT Intervals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Zebrafish is an emerging model system for cardiac conduction and regeneration. Zebrafish heart regenerates after 20% ventricular resection within 60 days. Whether cardiac conduction phenotype correlated with cardiomyocyte regeneration remained undefined. Longitudinal monitoring of the adult zebrafish heart (n = 12) was performed in terms of atrial contraction (PR intervals), ventricular depolarization (QRS complex) and repolarization (heart rated corrected QTc interval). Baseline electrocardiogram (ECG) signals were recorded one day prior to resection and twice per week over 59 days. Immunostaining for gap junctions with anti-Connexin-43 antibody was compared between the sham (n = 5) and ventricular resection at 60 days post-resection (dpr) (n = 7). Heart rate variability, QTc prolongation and J-point depression developed in the resected group but not in the sham. Despite a trend toward heart rate variability in response to ventricular resection, the differences between the resected and sham fish were, by and large, statistically insignificant. At 10 dpr, J-point depression was statistically significant (sham: −0.179 ± 0.061 mV vs. ventricular resection: −0.353 ± 0.105 mV, p < 0.01, n = 7). At 60 days, histology revealed either cardiomyocyte regeneration (n = 4) or scar tissues (n = 3). J-point depression was no longer statistically significant at 59 dpr (sham: −0.114 ± 0.085 mV; scar tissue: −0.268 ± 0.178 mV, p > 0.05, n = 3; regeneration: −0.209 ± 0.119 mV, p > 0.05, n = 4). Despite positive Connexin-43 staining in the regeneration group, QTc intervals remained prolonged (sham: 325 ± 42 ms, n = 5; scar tissues: 534 ± 51 ms, p < 0.01, n = 3; regeneration: 496 ± 31 ms, p < 0.01, n = 4). Thus, we observed delayed electric repolarization in either the regenerated hearts or scar tissues. Moreover, early regenerated cardiomyocytes lacked the conduction phenotypes of the sham fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arnaout, R., T. Ferrer, J. Huisken, K. Spitzer, D. Y. Stainier, M. Tristani-Firouzi, and N. C. Chi. Zebrafish model for human long QT syndrome. Proc. Natl Acad. Sci. USA 104(27):11316–11321, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann, O., R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Zupicich, K. Alkass, B. A. Buchholz, H. Druid, S. Jovinge, and J. Frisen. Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Braunwald, E., D. P. Zipes, and P. Libby. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA: W.B. Saunders Company, 2001.

  4. Chang, G. Y., F. Cao, M. Krishnan, M. Huang, Z. Li, X. Xie, A. Y. Sheikh, G. Hoyt, R. C. Robbins, and T. Hsiai. Positron emission tomography imaging of conditional gene activation in the heart. J. Mol. Cell. Cardiol. 43(1):18–26, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Chi, N. C., R. M. Shaw, B. Jungblut, J. Huisken, T. Ferrer, R. Arnaout, I. Scott, D. Beis, T. Xiao, H. Baier, L. Y. Jan, M. Tristani-Firouzi, and D. Y. R. Stainier. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 6(5):1006–1019, 2008.

    Article  CAS  Google Scholar 

  6. Hahn, C., and M. A. Schwartz. The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(12):2101–2107, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh, D. J. Y., and C. F. Liao. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br. J. Pharmacol. 137(6):782, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Keating, M. T. The long QT syndrome: a review of recent molecular genetic and physiologic discoveries. Medicine 75(1):1, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Kehat, I., A. Gepstein, A. Spira, J. Itskovitz-Eldor, and L. Gepstein. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes. A novel in vitro model for the study of conduction. Circ. Res. 91(8):659–663, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Kehat, I., D. Kenyagin-Karsenti, M. Snir, H. Segev, M. Amit, A. Gepstein, E. Livne, O. Binah, J. Itskovitz-Eldor, and L. Gepstein. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3):407–414, 2001.

    CAS  PubMed  Google Scholar 

  11. Lien, C. L., M. Schebesta, S. Makino, G. J. Weber, and M. T. Keating. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 4(8):e260, 2006.

    Article  PubMed  Google Scholar 

  12. Makkar, R. R., and P. S. Chen. Stem cell therapy for myocardial repair. J. Am. Coll. Cardiol. 42(12):2070–2072, 2003.

    Article  PubMed  Google Scholar 

  13. Milan, D. J., I. L. Jones, P. T. Ellinor, and C. A. MacRae. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J. Physiol. Heart Circ. Physiol. 291:H269–H273, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Milan, D.J., A. M. Kim, J. R. Winterfield, I. L. Jones, A. Pfeufer, S. Sanna, D. E. Arking, A. H. Amsterdam, K. M. Sabeh, J. D. Mably, D. S. Rosenbaum, R. T. Peterson, A. Chakravarti, S. Kääb, D. M. Roden, and C. A. MacRae. Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation 120(7):553–559, 2009.

    Article  PubMed  Google Scholar 

  15. Milan, D. J., and C. A. MacRae. Animal models for arrhythmias. Cardiovasc. Res. 67(3):426–437, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Nusslein-Volhard, C., and R. Dahm, Eds. Zebrafish. New York: Oxford University Press, 2002.

    Google Scholar 

  17. Poss, K. D., L. G. Wilson, and M. T. Keating. Heart regeneration in zebrafish. Science 298(5601):2188–2190, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Priori, S. G., P. J. Schwartz, C. Napolitano, R. Bloise, E. Ronchetti, M. Grillo, A. Vicentini, C. Spazzolini, J. Nastoli, and G. Bottelli. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348(19):1866, 2003.

    Article  PubMed  Google Scholar 

  19. Raya, A., A. Consiglio, Y. Kawakami, C. Rodriguez-Esteban, and J. C. Izpisua-Belmonte. The zebrafish as a model of heart regeneration. Cloning Stem Cells 6(4):345–351, 2004.

    Article  CAS  PubMed  Google Scholar 

  20. Reeve, J. L., A. M. Duffy, T. O’Brien, and A. Samali. Don’t lose heart—therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J. Cell Mol. Med. 9(3):609–622, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Rosen, M. R., M. J. Janse, and A. L. Wit. Cardiac Electrophysiology: A Textbook. Austin, TX: Futura Publishing Company, 1990.

  22. Sedmera, D., M. Reckova, A. de Almeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R. A. McCarthy, R. G. Gourdie, and R. P. Thompson. Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am. J. Physiol. Heart Circ. Physiol. 284(4):H1152–H1160, 2003.

    CAS  PubMed  Google Scholar 

  23. Stainier, D. Y. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2(1):39–48, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, P., Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu, L. Ai, C. H. Hu, Q. Zhou, K. Shung, C. L. Lien, and T. K. Hsiai. Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 37(5):890–901, 2009.

    Article  PubMed  Google Scholar 

  25. Surawicz, B., T. K. Knilans, and T. C. Chou. Chou’s Electrocardiography in Clinical Practice: Adult and Pediatric. Philadelphia, PA: W.B. Saunders Company, 2001.

  26. Zheng, Z. J., J. B. Croft, W. H. Giles, and G. A. Mensah. Sudden cardiac death in the United States, 1989 to 1998. Circulation 104(18):2158, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to Professor Calum MacRae from Massachusetts General Hospital, Harvard Medical School, for his advice on zebrafish ECG. The authors would also like to express gratitude for Alfred Mann Biomedical Engineering Institute for providing a low noise level space for ECG recording. This project was supported by NHLB 083015 (TKH) and NHLBI 068689 (TKH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Li, R., Parks, E. et al. Electrocardiogram Signals to Assess Zebrafih Heart Regeneration: Implication of Long QT Intervals. Ann Biomed Eng 38, 2346–2357 (2010). https://doi.org/10.1007/s10439-010-9993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9993-6

Keywords

Navigation