Skip to main content
Log in

Computational Investigation of the Delamination of Polymer Coatings During Stent Deployment

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in angioplasty have involved the application of polymer coatings to stent surfaces for purposes of drug delivery. Given the high levels of deformation developed in the plastic hinge of a stent during deployment, the achievement of an intact bond between the coating and the stent presents a significant mechanical challenge. Problems with coating delamination have been reported in recent experimental studies. In this paper, a cohesive zone model of the stent–coating interface is implemented in order to investigate coating debonding during stent deployment. Simulations reveal that coatings debond from the stent surface in tensile regions of the plastic hinge during deployment. The critical parameters governing the initiation of delamination include the coating thickness and stiffness, the interface strength between the coating and stent surface, and the curvature of the plastic hinge. The coating is also computed to debond from the stent surface in compressive regions of the plastic hinge by a buckling mechanism. Computed patterns of coating delamination correlate very closely with experimental images. This study provides insight into the critical factors governing coating delamination during stent deployment and offers a predictive framework that can be used to improve the design of coated stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12

Similar content being viewed by others

References

  1. Abdul-Baqi, A., and E. Van der Giessen. Indentation-induced interface delamination of a strong film on a ductile substrate. Thin Solid Films 381:143–154, 2001.

    Article  CAS  Google Scholar 

  2. Abdul-Baqi, A., and E. Van der Giessen. Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int. J. Solids Struct. 39:1427–1442, 2002.

    Article  Google Scholar 

  3. AdvanSource Biomaterials Corporation. Fact sheet: ChronoFlex® AR: Biodurable Medical Grade Polyurethane. AdvanSource Biomaterials Corporation, 2008.

  4. Antony, P., J. Puskas, and M. Kontopoulou. Investigation of the rheological and mechanical properties of a polystyrene-polyisobutylene-polystyrene triblock copolymer and its blends with polystyrene. Polym. Eng. Sci. 43:243–253, 2003.

    Article  CAS  Google Scholar 

  5. Donnelly, E., M. Bruzzi, T. Connolley, and P. McHugh. Finite element comparison of performance related characteristics of balloon expandable stents. Comput. Methods Biomech. Biomed. Eng. 10:103–110, 2007.

    CAS  Google Scholar 

  6. Hale, P., S. Turgeon, P. Horny, F. Lewis, N. Brack, G. Van Riessen, P. Pigram, and D. Mantovani. X-ray photoelectron emission microscopy and time-of-flight secondary ion mass spectrometry analysis of ultrathin fluoropolymer coatings for stent applications. Langmuir 24:7897–7905, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Hanefeld, P., U. Westedt, R. Wombacher, T. Kissel, A. Schaper, J. Wendorff, and A. Greiner. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer–polymer adhesion for stent applications. Biomacromolecules 7:2086–2090, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Hattiangadi, A., and T. Siegmund. An analysis of the delamination of an environmental protection coating under cyclic heat loads. Eur. J. Mech. A Solids 24:361–370, 2005.

    Article  Google Scholar 

  9. Hoffmann, R., G. Mintz, P. Haager, T. Bozoglu, E. Grube, M. Gross, C. Beythien, H. Mudra, J. Vom Dahl, and P. Hanrath. Relation of stent design and stent surface material to subsequent in-stent intimal hyperplasia in coronary arteries determined by intravascular ultrasound. Am. J. Cardiol. 89:1360–1364, 2002.

    Article  PubMed  Google Scholar 

  10. Holmes, D. R. State of the art in coronary intervention. Am. J. Cardiol. 91:50–53, 2003.

    Article  Google Scholar 

  11. Kim, H.-J., M.-W. Moon, D.-I. Kim, K.-R. Lee, and K. H. Oh. Observation of the failure mechanism for diamond-like carbon film on stainless steel under tensile loading. Scr. Mater. 57:1016–1019, 2007.

    Article  CAS  Google Scholar 

  12. Kim, H.-J., M.-W. Moon, K.-R. Lee, H.-K. Seok, S.-H. Han, J.-W. Ryu, K.-M. Shin, and K. H. Oh. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading. Thin Solid Films 517:1146–1150, 2008.

    Article  CAS  Google Scholar 

  13. Kollum, M., A. Farb, R. Schreiber, K. Terfera, A. Arab, A. Geist, J. Haberstroh, S. Wnendt, R. Virmani, and C. Hehrlein. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter. Cardiovasc. Interv. 64:85–90, 2005.

    Article  PubMed  Google Scholar 

  14. Levy, Y., D. Mandler, J. Weinberger, and A. J. Domb. Evaluation of drug-eluting stents’ coating durability—clinical and regulatory implications. J. Biomed. Mater. Res. B: Appl. Biomater. 2009 (in press).

  15. Maguire, P., J. McLaughlin, T. Okpalugo, P. Lemoine, P. Papakonstantinou, E. McAdams, M. Needham, A. Ogwu, M. Ball, and G. Abbas. Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diamond Relat. Mater. 14:1277–1288, 2005.

    Article  CAS  Google Scholar 

  16. McGarry, J., and P. McHugh. Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids 56:1554–1565, 2008.

    Article  Google Scholar 

  17. McGarry, J. P., B. P. Murphy, and P. E. McHugh. Computational mechanics modelling of cell-substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53:2597–2637, 2005.

    Article  Google Scholar 

  18. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31:421–438, 2004.

    Google Scholar 

  19. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, E. O’Cearbhaill, and R. M. McMeeking. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech. 74:978–989, 2007.

    Article  Google Scholar 

  20. Ormiston, J., M. Webster, P. Ruygrok, J. Stewart, D. Scott, E. Currie, M. Panther, and B. Shaw. Polymer integrity after cypher and taxus stent implantation: a scanning electron microscope study. 16th Annual Transcatheter Cardiovascular Therapeutics (TCT) Conference, Washington, 2004.

  21. Otsuka, Y., N. A. Chronos, R. P. Apkarian, and K. A. Robinson. Scanning electron microscopic analysis of defects in polymer coatings of three commercially available stents: comparison of BiodivYsio, Taxus and Cypher stents. J. Invasive Cardiol. 19:71–76, 2007.

    PubMed  Google Scholar 

  22. Popma, J. J. SCAI Interventional Cardiology Fellows Course. The Society for Cardiovascular Angiography and Interventions, Las Vegas, 2007.

  23. Rahulkumar, P., A. Jagota, S. Bennison, and S. Saigal. Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37:1873–1897, 2000.

    Article  Google Scholar 

  24. Regar, E., G. Sianos, and P. W. Serruys. Stent development and local drug delivery. Br. Med. Bull. 59:227–248, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Trigwell, S., S. De, R. Sharma, M. Mazumder, and J. Mehta. Structural evaluation of radially expandable cardiovascular stents encased in a polyurethane film. J. Biomed. Mater. Res. B 76:241, 2006.

    Google Scholar 

  26. Wieneke, H., T. Sawitowski, S. Wnendt, A. Fischer, O. Dirsch, I. Karoussos, and R. Erbel. Stent coating: a new approach in interventional cardiology. Herz 27:518–526, 2002.

    Article  PubMed  Google Scholar 

  27. Xia, S. M., Y. F. Gao, A. F. Bower, L. C. Lev, and Y.-T. Cheng. Delamination mechanism maps for a strong elastic coating on an elastic-plastic substrate subjected to contact loading. Int. J. Solids Struct. 44:3685–3699, 2007.

    Article  Google Scholar 

  28. Xu, X., and A. Needleman. Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1:111–132, 1993.

    Article  Google Scholar 

  29. Yan, F., K. Gross, G. Simon, and C. Berndt. Peel-strength behavior of bilayer thermal-sprayed polymer coatings. J. Appl. Polym. Sci. 88:214–226, 2003.

    Article  CAS  Google Scholar 

  30. Yuan, H., and J. Chen. Computational analysis of thin coating layer failure using a cohesive model and gradient plasticity. Eng. Fract. Mech. 70:1929–1942, 2003.

    Article  Google Scholar 

  31. Yung, L., and S. Cooper. Neutrophil adhesion on phosphorylcholine-containing polyurethanes. Biomaterials 19:31–40, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

C.H. was supported by an Irish Research Council for Science, Engineering and Technology Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. McGarry.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, C.G., McHugh, P.E. & McGarry, J.P. Computational Investigation of the Delamination of Polymer Coatings During Stent Deployment. Ann Biomed Eng 38, 2263–2273 (2010). https://doi.org/10.1007/s10439-010-9972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9972-y

Keywords

Navigation