Skip to main content
Log in

Origin of the Electrocardiographic U Wave: Effects of M Cells and Dynamic Gap Junction Coupling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The electrophysiological basis underlying the genesis of the U wave remains uncertain. Previous U wave modeling studies have generally been restricted to 1-D or 2-D geometries, and it is not clear whether the U waves generated by these models would match clinically observed U wave body surface potential distributions (BSPDs). We investigated the role of M cells and transmural dispersion of repolarization (TDR) in a 2-D, fully ionic heart tissue slice model and a realistic 3-D heart/torso model. In the 2-D model, while a U wave was present in the ECG with dynamic gap junction conductivity, the ECG with static gap junctions did not exhibit a U wave. In the 3-D model, TDR was necessary to account for the clinically observed potential minimum in the right shoulder area during the U wave peak. Peak T wave simulations were also run. Consistent with at least some clinical findings, the U wave body surface maximum was shifted to the right compared to the T wave maximum. We conclude that TDR can account for the clinically observed U wave BSPD, and that dynamic gap junction conductivity can result in realistic U waves generated by M cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antzelevitch, C. Modulation of transmural repolarization. Ann. N. Y. Acad. Sci. 1047:314–323, 2005.

    Article  PubMed  Google Scholar 

  2. Antzelevitch, C., and S. Sicouri. Clinical relevance of cardiac arrhythmias generated by after depolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J. Am. Coll. Cardiol. 23(1):259–277, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Ashikaga, H., B. A. Coppola, B. Hopenfeld, E. S. Leifer, E. R. McVeigh, and J. H. Omens. Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo. J. Am. Coll. Cardiol. 49(8):909–916, 2007.

    Article  PubMed  Google Scholar 

  4. Campbell, S. G., S. N. Flaim, C. H. Leem, and A. D. McCulloch. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model. Philos. Trans. 366(1879):3361–3380, 2008.

    Article  Google Scholar 

  5. Depolli, M., V. Avbelj, and R. Trobec. Computer-simulated alternative modes of U-wave genesis. J. Cardiovasc. Electrophysiol. 19(1):84–89, 2008.

    PubMed  Google Scholar 

  6. di Bernardo, D., and A. Murray. Computer model for study of cardiac repolarization. J. Cardiovasc. Electrophysiol. 11(8):895–899, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. di Bernardo, D., and A. Murray. Origin on the electrocardiogram of U-waves and abnormal U-wave inversion. Cardiovasc. Res. 53(1):202–208, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Drouin, E., F. Charpentier, C. Gauthier, K. Laurent, and H. Le Marec. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J. Am. Coll. Cardiol. 26(1):185–192, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Einthoven, W. Le elecardiogramme. Arch. Int. Physiol. 4:132–164, 1906.

    Google Scholar 

  10. Goernig, M., J. Haueisen, M. Liehr, M. Schlosser, H. R. Figulla, and U. Leder. Detection of U wave activity in healthy volunteers by high-resolution magnetocardiography. J. Electrocardiol. 43(1):43–47, 2010.

    Article  PubMed  Google Scholar 

  11. Hoffman, J. D. The finite element method. In: Numerical Methods for Engineers and Scientists, 2nd ed, edited by J. D. Hoffman. New York: Marcel Dekker, 2001, pp. 711–774.

    Google Scholar 

  12. Hoffman, B. F., and P. F. Cranefield. Electrophysiology of the Heart. New York: McGraw-Hill, 1960.

    Google Scholar 

  13. Hopenfeld, B. ST segment depression: the possible role of global repolarization dynamics. Biomed. Eng. Online 6:6, 2007.

    Article  PubMed  Google Scholar 

  14. Lepeschkin, E. Physiological basis of the U wave. In: Advances in Electrocardiography, edited by R. C. Schlant, and J. W. Hurst. New York: Grune and Stratton, 1972, pp. 431–447.

    Google Scholar 

  15. Lin, X., J. Gemel, E. C. Beyer, and R. D. Veenstra. Dynamic model for ventricular junctional conductance during the cardiac action potential. Am. J. Physiol. Heart Circ. Physiol. 288(3):H1113–H1123, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Miller, W. T., and D. B. Geselowitz. Simulation studies of the electrocardiogram. I. The normal heart. Circ. Res. 43(2):301–315, 1978.

    PubMed  CAS  Google Scholar 

  17. Muzikant, A. L., E. W. Hsu, P. D. Wolf, and C. S. Henriquez. Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials. Ann. Biomed. Eng. 30(7):867–883, 2002.

    Article  PubMed  Google Scholar 

  18. Nesterenko, V. V., and C. Antzelevitch. Simulation of the electrocardiographic U wave in heterogeneous myocardium: effect of local junctional resistance. Proceedings of the Computers in Cardiology. Los Alamitos, CA: IEEE Computer Society Press, pp. 43–46, 1992.

  19. Nielsen, P. M., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(4 Pt 2):H1365–H1378, 1991.

    PubMed  CAS  Google Scholar 

  20. Noma, A., and N. Tsuboi. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig. J. Physiol. 382:193–211, 1987.

    PubMed  CAS  Google Scholar 

  21. Oka, C., H. Matsuda, N. Sarai, and A. Noma. Modeling the calcium gate of cardiac gap junction channel. J. Physiol. Sci. 56(1):79–85, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. Opthof, T., R. Coronel, and M. J. Janse. Is there a significant transmural gradient in repolarization time in the intact heart? Repolarization gradients in the intact heart. Circ. Arrhythm. Electrophysiol. 2:89–96, 2009.

    Article  PubMed  Google Scholar 

  23. Ritsema van Eck, H. J., J. A. Kors, and G. van Herpen. The U wave in the electrocardiogram: a solution for a 100-year-old riddle. Cardiovasc. Res. 67(2):256–262, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Rush, S., and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. 25(4):389–392, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Schimpf, R., C. Antzelevitch, D. Haghi, C. Giustetto, A. Pizzuti, F. Gaita, C. Veltmann, C. Wolpert, and M. Borggrefe. Electromechanical coupling in patients with the short QT syndrome: further insights into the mechanoelectrical hypothesis of the U wave. Heart Rhythm 5(2):241–245, 2008.

    Article  PubMed  Google Scholar 

  26. Spach, M. S., and R. C. Barr. Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog. Circ. Res. 37(2):243–257, 1975.

    PubMed  CAS  Google Scholar 

  27. Spach, M. S., R. C. Barr, R. B. Warren, D. W. Benson, A. Walston, and S. B. Edwards. Isopotential body surface mapping in subjects of all ages: emphasis on low-level potentials with analysis of the method. Circulation 59(4):805–821, 1979.

    PubMed  CAS  Google Scholar 

  28. Stinstra, J. G., B. Hopenfeld, and R. S. Macleod. On the passive cardiac conductivity. Ann. Biomed. Eng. 3(12):1743–1751, 2005.

    Article  Google Scholar 

  29. Surawicz, B. U wave: facts, hypotheses, misconceptions, and misnomers. J. Cardiovasc. Electrophysiol. 9(10):1117–1128, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Taggart, P., P. Sutton, T. Opthof, R. Coronel, and P. Kallis. Electrotonic cancellation of transmural electrical gradients in the left ventricle in man. Prog. Biophys. Mol. Biol. 82(1–3):243–254, 2003.

    Article  PubMed  Google Scholar 

  31. ten Tusscher, K. H., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4):H1573–H1589, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. Yan, G. X., and C. Antzelevitch. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 98(18):1928–1936, 1998.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Elliot McVeigh, PhD, for financial and spiritual support for this study. This study was supported by grants from the NHLBI (Z01-HL004609 to Elliot R. McVeigh, PhD). This study was made possible in part by the facilities of the NIH/NCRR Center for Integrative Biomedical Computing (P41-RR12553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Hopenfeld.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopenfeld, B., Ashikaga, H. Origin of the Electrocardiographic U Wave: Effects of M Cells and Dynamic Gap Junction Coupling. Ann Biomed Eng 38, 1060–1070 (2010). https://doi.org/10.1007/s10439-010-9941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9941-5

Keywords

Navigation