Skip to main content
Log in

Characterization of Cell Mechanical Properties by Computational Modeling of Parallel Plate Compression

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Baaijens, F. P. T., W. R. Trickey, T. A. Laursen, and F. Guilak. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann. Biomed. Eng. 33:494–501, 2005.

    Article  PubMed  Google Scholar 

  2. Bausch, A., W. Möller, and E. Sackmann. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–579, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Bausch, A., F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:2038–2049, 1998.

    Article  PubMed  CAS  Google Scholar 

  4. Caille, N., O. Thoumine, Y. Tardy, and J.-J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187, 2002.

    Article  PubMed  Google Scholar 

  5. Dahl, K., A. Engler, J. Pajerowski, and D. Discher. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89:2855–2864, 2005.

    Article  PubMed  CAS  Google Scholar 

  6. Darling, E., M. Topel, S. Zauscher, T. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41:454–464, 2008.

    Article  PubMed  Google Scholar 

  7. Deshpande, V., R. McMeeking, and A. Evans. A bio-chemo-mechanical model for cell contractility. Proc. Natl Acad. Sci. 103:14015, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Guilak, F., G. R. Erickson, and H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi, K. Tensile properties and local stiffness of cells. In: Mechanics of Biological Tissue, edited by G. A. Holzapfel, and R. W. Ogden. Springer-Verlag, 2006, pp. 137–152.

  11. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, W., B. Anvari, J. Torres, R. Lebaron, and K. Athanasiou. Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21:88–95.

  13. Icard-Arcizet, D., O. Cardoso, A. Richert, and S. Henon. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–2913, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334–341, 2003.

    Article  PubMed  Google Scholar 

  16. Kole, T., Y. Tseng, I. Jiang, J. Katz, and D. Wirtz. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16:328–338, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Leipzig, N., and K. Athanasiou. Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94:2412–2422, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. McGarry, J. P., J. Fu, M. T. Yang, C. S. Chen, R. M. McMeeking, A. G. Evans, and V. S. Deshpande. Simulation of the contractile response of cells on an array of micro-posts. Phil. Trans. R. Soc. A 367:3477–3497, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. McGarry, J. P., and P. E. McHugh. Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids 56:1554–1565, 2008.

    Article  Google Scholar 

  21. McGarry, J. P., B. P. Murphy, and P. E. McHugh. Computational mechanics modelling of cell–substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53:2597–2637, 2005.

    Article  Google Scholar 

  22. Nguyen, V., Z. Zhang, C. Thomas, Q. G. Wang, N. Kuiper, and A. El Haj. Mechanical properties of single chondrocytes and chondrons determined by microcompression technique and numerical modelling. Trans. Orthop. Res. Soc. 34:323, 2009.

    Google Scholar 

  23. Ofek, G., D. C. Wiltz, and K. A. Athanasiou. Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J., 2009, accepted for publication.

  24. Ofek, G., R. Natoli, and K. Athanasiou. In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech., 2009

  25. Ohashi, T., Y. Ishii, Y. Ishikawa, T. Matsumoto, and M. Sato. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Biomed. Mater. Eng. 12:319–327, 2002.

    PubMed  CAS  Google Scholar 

  26. Pathak, A., V. Deshpande, R. McMeeking, and A. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5:507–524, 2008.

    Article  PubMed  Google Scholar 

  27. Peeters, E. A. G., C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, L. H. E. H. Snoeckx, and F. P. T. Baaijens. Anisotropic, three-dimensional deformation of single attached cells under compression. Ann. Biomed. Eng. 32:1443–1452, 2004.

    Article  PubMed  Google Scholar 

  28. Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Mechanical and failure properties of single attached cells under compression. J. Biomech. 38:1685–1693, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Viscoelastic properties of single attached cells under compression. J. Biomech. Eng. 127:237–243, 2005.

    Article  PubMed  Google Scholar 

  30. Pelham, R. J., and Y.-L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farre, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.

    Article  PubMed  CAS  Google Scholar 

  32. Rowat, A., L. Foster, M. Nielsen, M. Weiss, and J. Ipsen. Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2:63–69, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Shieh, A. C., and K. A. Athanasiou. Dynamic compression of single cells. Osteoarthritis Cartilage 15:328–334, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Shiu, C., Z. Zhang, and C. R. Thomas. A novel technique for the study of bacterial cell mechanical properties. Biotechnol. Tech. 13:707–713, 1999.

    Article  CAS  Google Scholar 

  37. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100:1484–1489, 2003.

    Google Scholar 

  38. Theret, D., M. Levesque, M. Sato, R. Nerem, and L. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110:190, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas, C., J. Collier, C. Sfeir, and K. Healy. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. 99:1972, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Thoumine, O. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110:2109–2116, 1997.

    PubMed  CAS  Google Scholar 

  41. Trickey, W., F. Baaijens, T. Laursen, L. Alexopoulos, and F. Guilak. Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39:78–87, 2006.

    Article  PubMed  Google Scholar 

  42. Trickey, W., G. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898.

  43. Trickey, W., T. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22:131–139, 2004.

    Article  PubMed  Google Scholar 

  44. Vaziri, A., H. Lee, and M. Kaazempur Mofrad. Deformation of the cell nucleus under indentation: mechanics and mechanisms. J. Mater. Res. 21:2126–2135, 2006.

    Article  CAS  Google Scholar 

  45. Vaziri, A., and M. Mofrad. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40:2053–2062, 2007.

    Article  PubMed  Google Scholar 

  46. Wakatsuki, T., B. Schwab, N. C. Thompson, and E. L. Elson. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114:1025–1036, 2001.

    PubMed  CAS  Google Scholar 

  47. Wakatsuki, T., R. Wysolmerski, and E. Elson. Mechanics of cell spreading: role of myosin II. J. Cell Sci. 116:1617–1625, 2003.

    Article  PubMed  CAS  Google Scholar 

  48. Wang, J., P. Goldschmidt-Clermont, J. Wille, and F. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, Q. G., B. Nguyen, C. Thomas, A. El Haj, Z. Zhang, and N. Kuiper. The Relationship between mechanical forces and gene expression of single chondrocytes and chondrons. Trans. Orthop. Res. Soc. 34:297, 2009.

    Google Scholar 

  50. Yeung, T., P. Georges, L. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. K.A. Athanasiou, Dr. G. Ofek and Prof. P.E. McHugh for insightful discussions. Funding was provided in part by the Science Foundation Ireland Research Frontiers Programme (SFI-RFP/ENM1726), and in part by an Irish Council for Science Engineering and Technology (IRCSET) Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. McGarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGarry, J.P. Characterization of Cell Mechanical Properties by Computational Modeling of Parallel Plate Compression. Ann Biomed Eng 37, 2317–2325 (2009). https://doi.org/10.1007/s10439-009-9772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9772-4

Keywords

Navigation