Skip to main content
Log in

Evaluation of a Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, a hybrid drift flux velocity correction (DF-VC) model that accounts for both submicrometer particle diffusion and inertia was extended to transient conditions and was tested against existing experimental deposition data measured in a replica cast of the human tracheobronchial (TB) region for laminar and turbulent flow. To evaluate the effectiveness of the DF-VC model, deposition results were compared with a standard chemical species (CS) approach that neglects particle inertia. A numerical model of the TB cast was constructed from CT images and extended from the larynx to approximately the sixth respiratory generation. Experimentally determined inlet and outlet flow conditions were implemented in the computational model to ensure direct comparisons between simulations and measurements for the deposition of 40 and 200 nm particles. A low Reynolds number k–ω turbulence model was employed to resolve the laminar and turbulent flow regimes that coexist in the TB geometry. Interesting flow characteristics were observed due to the presence of the larynx, asymmetrical ventilation, and left-right asymmetry, which created a right-skewed laryngeal jet and flow reversal in the trachea that persist over a majority of the transient flow cycle. In comparison with the CS model, deposition results of the DF-VC approach persistently agreed better with experimental findings on a total and sub-branch basis, which indicated that the DF-VC model effectively captured the influence of finite particle inertia. For the submicrometer aerosols considered, transient flows were observed to increase deposition arising from impaction and decrease deposition arising from diffusion on a total and segmental basis compared with steady state conditions. However, the maximum deposition enhancement factor was significantly increased under transient conditions for both 40 nm (factor of 2) and 200 nm (factor of 7) aerosols. Results of this study indicate that a drift flux particle transport model with near-wall velocity corrections can provide an effective continuous-field approach for simulating the transport and deposition of submicrometer respiratory aerosols in human upper TB airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Balashazy I., W. Hofmann, T. Heistracher Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J. Aerosol Sci. 30:185–203, 1999. doi:10.1016/S0021-8502(98)00040-8

    Article  CAS  Google Scholar 

  2. Balashazy I., W. Hofmann, T. Heistracher Local particle deposition patterns may play a key role in the development of lung cancer. J. Appl. Physiol. 94:1719–1725, 2003

    PubMed  Google Scholar 

  3. Bernstein G. M. A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. Inhal. Toxicol. 16:675–689, 2004. doi:10.1080/08958370490476587

    Article  PubMed  CAS  Google Scholar 

  4. Brancatisano T., P. W. Collett, L. A. Engel Respiratory movements of the vocal cords. J. Appl. Physiol. 54(5):1269–1276, 1983

    PubMed  CAS  Google Scholar 

  5. Chan T. L., M. Lippmann Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409, 1980

    PubMed  CAS  Google Scholar 

  6. Chan T. L., R. M. Schreck, M. Lippmann. Effect of the laryngeal jet on particle deposition in the human trachea and upper bronchial airways. J. Aerosol Sci. 11:447–459, 1980. doi:10.1016/0021-8502(80)90117-2

    Article  Google Scholar 

  7. Chen F., A. C. K. Lai. An Eulerian model for particle deposition under electrostatic and turbulent conditions. J. Aerosol Sci. 35:47–62, 2004. doi:10.1016/S0021-8502(03)00383-5

    Article  CAS  Google Scholar 

  8. Cheng K. H., Y. S. Cheng, H. C. Yeh, R. A. Guilmette, S. Q. Simpson, S. Q. Yang, D. L. Swift In vivo measurements of nasal airway dimensions and ultrafine aerosol depositing in human nasal and oral airways. J. Aerosol Sci. 27:785–801, 1996. doi:10.1016/0021-8502(96)00029-8

    Article  CAS  Google Scholar 

  9. Cheng Y. S., Y. F. Su, H. C. Yeh, D. L. Swift. Deposition of Thoron progeny in human head airways. Aerosol Sci. Technol. 18:359–375, 1993. doi:10.1080/02786829308959610

    Article  CAS  Google Scholar 

  10. Cohen B. S., B. Asgharian. Deposition of ultrafine particles in the upper airways: an empirical analysis. J. Aerosol Sci. 21:789–797, 1990. doi:10.1016/0021-8502(90)90044-X

    Article  Google Scholar 

  11. Cohen B. S., R. G. Sussman, M. Lippmann. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12:1082–1093, 1990. doi:10.1080/02786829008959418

    Article  Google Scholar 

  12. Cohen B. S., J. Q. Xiong, B. Asgharian, L. Ayres Deposition of inhaled charged ultrafine particles in a simple tracheal model. J. Aerosol Sci. 26(7):1149–1160, 1995. doi:10.1016/0021-8502(95)00039-F

    Article  CAS  Google Scholar 

  13. Corcoran T. E., N. Chigier Inertial deposition effects: a study of aerosol mechanics in the trachea using laser Doppler velocimetry and fluorescent dye. J. Biomech. Eng. 124:629–637, 2002. doi:10.1115/1.1516572

    Article  PubMed  CAS  Google Scholar 

  14. Crowe C., M. Sommerfeld, Y. Tsuji Multiphase Flows with Drops and Bubbles. CRC Press, Boca Raton, 1998

    Google Scholar 

  15. Dendo R. I., R. F. Phalen, R. C. Mannix, M. J. Oldham Effects of breathing parameters on sidestream cigarette smoke deposition in a hollow tracheobronchial model. Am. Ind. Hyg. Assoc. J. 59(6):381–387, 1998. doi:10.1080/15428119891010631

    PubMed  CAS  Google Scholar 

  16. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy 52(Suppl. 38):52–67, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Doll R., A. B. Hill Smoking and carcinoma of the lung: preliminary report. Br. Med. J. 2:739–748, 1950

    PubMed  CAS  Google Scholar 

  18. England S. J., D. Bartlett, J. A. Daubenspeck Influence of human vocal cord movements on airflow and resistance during eupnea. J. Appl. Physiol. 52:773–779, 1982

    PubMed  CAS  Google Scholar 

  19. Fan L. S., C. Zhu Principles of Gas–Solid Flows. Cambridge University Press, UK, 1998

    Google Scholar 

  20. Friedlander S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, 2 edn. Oxford University Press, New York, 2000

    Google Scholar 

  21. Ghalichi F., X. Deng, A. D. Champlain, Y. Douville, M. King, R. Guidoin Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35(4&5):281–294, 1998. doi:10.1016/S0006-355X(99)80011-0

    Article  PubMed  CAS  Google Scholar 

  22. Gurman J. L., M. Lippmann, R. B. Schlesinger Particle deposition in replicate casts of the human upper trancheobronchial tree under constant and cyclic inspiratory flow. I. Experimental. Aerosol Sci. Technol. 3:245–252, 1984. doi:10.1080/02786828408959012

    Article  Google Scholar 

  23. Gurman J. L., R. B. Schlesinger, M. Lippmann A variable-opening mechanical larynx for use in aerosol deposition studies. Am. Ind. Hyg. Assoc. J. 41:678–680, 1980

    PubMed  CAS  Google Scholar 

  24. Heyder J., J. Gebhart, G. Rudolf, C. F. Schiller, W. Stahlhofen Deposition of particles in the human respiratory tract in the size range of 0.005–15 microns. J. Aerosol Sci. 17(5):811–825, 1986. doi:10.1016/0021-8502(86)90035-2

    Article  Google Scholar 

  25. Hinds W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York, 1999

    Google Scholar 

  26. Hofmann W., I. Balashazy, T. Heistracher The relationship between secondary flows and particle deposition patterns in airway bifurcations. Aerosol Sci. Technol. 35(6):958–968, 2001. doi:10.1080/027868201753306723

    Article  CAS  Google Scholar 

  27. Hofmann W., R. Golser, I. Balashazy Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci. Technol. 37(12):988–994, 2003. doi:10.1080/02786820300898

    Article  CAS  Google Scholar 

  28. Hofmann W., L. Morawska, R. Bergmann Environmental tobacco smoke deposition in the human respiratory tract: differences between experimental and theoretical approaches. J. Aerosol Med. 14(3):317–326, 2001. doi:10.1089/089426801316970277

    Article  PubMed  CAS  Google Scholar 

  29. Hofmann W., R. Sturm, J. S. Fleming, J. H. Conway, L. Bolt Simulation of three-dimensional particle deposition patterns in human lungs and comparison with experimental SPECT data. Aerosol Sci. Technol. 39:771–781, 2005

    CAS  Google Scholar 

  30. Hood E. Nanotechnology: looking as we leap. Environ. Health Perspect. 112(13):A740–A749, 2004

    PubMed  Google Scholar 

  31. ICRP. Human Respiratory Tract Model for Radiological Protection. Elsevier Science Ltd., New York, 1994

    Google Scholar 

  32. Ingham D. B. Diffusion of aerosols from a stream flowing through a cylindrical tube. J. Aerosol Sci. 6:125–132, 1975. doi:10.1016/0021-8502(75)90005-1

    Article  Google Scholar 

  33. Ingham D. B. Diffusion of aerosols in the entrance region of a smooth cylindrical pipe. J. Aerosol Sci. 22(3):253–257, 1991. doi:10.1016/S0021-8502(05)80003-5

    Article  Google Scholar 

  34. Jaques P. A., C. S. Kim Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12(8):715–731, 2000. doi:10.1080/08958370050085156

    Article  PubMed  CAS  Google Scholar 

  35. Kabilan S., C. L. Lin, E. A. Hoffman Characteristics of airflow in a CT-based ovine lung: a numerical study. J. Appl. Physiol. 102:1469–1482, 2007. doi:10.1152/japplphysiol.01219.2005

    Article  PubMed  Google Scholar 

  36. Keith C. H. Particle size studies on tobacco smoke. Beitr. zur Tabakforschung 11(3):123–131, 1982

    Google Scholar 

  37. Kim, C. S. and D. Fisher. In: Abstracts 4th International Aerosol Conference, edited by R. C. Flagan. Cincinnati, 1994, vol. 2, pp. 888–889

  38. Kittelson D. B. Engines and nanoparticles: a review. J. Aerosol Sci. 29(5-6):575–588, 1998. doi:10.1016/S0021-8502(97)10037-4

    Article  CAS  Google Scholar 

  39. Kreyling W. G., M. Semmler-Behnke, W. Moller Ultrafine particle-lung interactions: does size matter? J. Aerosol Med. 19:74–83, 2006. doi:10.1089/jam.2006.19.74

    Article  PubMed  CAS  Google Scholar 

  40. Kreyling W. G., M. Semmler, W. Moller Dosimetry and toxicology of ultrafine particles. J. Aerosol Med. 17(2):140–152, 2004. doi:10.1089/0894268041457147

    Article  PubMed  CAS  Google Scholar 

  41. Lee D., J. Lee Dispersion of aerosol bolus during one respiratory cycle in a model lung airway. J. Aerosol Sci. 33:1219, 2002. doi:10.1016/S0021-8502(02)00053-8

    Article  CAS  Google Scholar 

  42. Li, Z., C. Kleinstreuer, and Z. Zhang. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. J. Aerosol Sci. 38(625–644), 2007. doi:10.1016/j.jaerosci.2007.03.010.

  43. Li Z., C. Kleinstreuer, Z. Zhang Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part II: particle transport and deposition. Eur. J. Mech. B Fluids 26:632–649, 2007. doi:10.1016/j.euromechflu.2007.02.003

    Article  Google Scholar 

  44. Li N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Y. Wang, T. Oberley, J. Froines, A. Nel. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111(4):455–460, 2003

    PubMed  CAS  Google Scholar 

  45. Lin C. L., M. H. Tawhai, G. McLennan, E. A. Hoffman Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309, 2007. doi:10.1016/j.resp.2007.02.006

    Article  PubMed  Google Scholar 

  46. Longest P. W., C. Kleinstreuer, J. R. Buchanan Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33(4):577–601, 2004. doi:10.1016/j.compfluid.2003.06.002

    Article  Google Scholar 

  47. Longest P. W., M. J. Oldham Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J. Aerosol Sci. 39:48–70, 2008. doi:10.1016/j.jaerosci.2007.10.001

    Article  CAS  Google Scholar 

  48. Longest P. W., S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29(3):350–366, 2007. doi:10.1016/j.medengphy.2006.05.012

    Article  PubMed  Google Scholar 

  49. Longest P. W., S. Vinchurkar Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J. Biomech. 40:305–316, 2007. doi:10.1016/j.jbiomech.2006.01.006

    Article  Google Scholar 

  50. Longest P. W., S. Vinchurkar, T. B. Martonen Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37:1234–1257, 2006. doi:10.1016/j.jaerosci.2006.01.011

    Article  CAS  Google Scholar 

  51. Longest P. W., J. Xi Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(1):111–130, 2007. doi:10.1016/j.jaerosci.2006.09.007

    Article  CAS  Google Scholar 

  52. Longest P. W., J. Xi Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41:380–397, 2007. doi:10.1080/02786820701203223

    Article  CAS  Google Scholar 

  53. Manninen, M., V. Taivassalo, and S. Kallio. On the Mixture Model for Multiphase Flow. VTT Publications 288, Technical Research Center of Finland, 1996

  54. Martonen, T. B. In: Aerosols, edited by S. D. Lee. Chesea, Michigan: Lewis Publishers, 1986.

  55. Martonen T. B. Mathematical-model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82(12):1191–1199, 1993. doi:10.1002/jps.2600821202

    Article  PubMed  CAS  Google Scholar 

  56. Martonen T. B., W. Hoffmann, J. E. Lowe Cigarette smoke and lung cancer. Health Phys. 52(2):213–217, 1987

    PubMed  CAS  Google Scholar 

  57. Martonen T. B., Z. Zhang, R. Lessmann Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci. Technol. 19:133–144, 1993. doi:10.1080/02786829308959627

    Article  CAS  Google Scholar 

  58. Martonen T. B., Z. Zhang, Y. Yang Particle diffusion with entrance effects in a smooth-walled cylinder. J. Aerosol Sci. 27(1):139–150, 1996. doi:10.1016/0021-8502(95)00530-7

    Article  CAS  Google Scholar 

  59. Martonen T. B., Z. Zhang, Y. Yang, G. Bottei Airway surface irregularities promote particle diffusion in the human lung. Radiat. Prot. Dosimetry 59:5–18, 1995

    Google Scholar 

  60. Matida E. A., W. H. Finlay, M. Breuer, C. F. Lange Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J. Aerosol Med. 19(3):290–300, 2006. doi:10.1089/jam.2006.19.290

    Article  PubMed  CAS  Google Scholar 

  61. Maynard A. D., P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova Exposure to carbon nanotube material: aerosol release during the handling of unrefined single walled carbon nanotube material. J. Toxicol. Environ. Health Part A 67:87–107, 2004

    Article  PubMed  CAS  Google Scholar 

  62. Morawska L., W. Barron, J. Hitchins Experimental deposition of environmental tobacco smoke submicrometer particulate matter in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 60:334–339, 1999. doi:10.1080/00028899908984450

    PubMed  CAS  Google Scholar 

  63. Morawska L., W. Hofmann, J. Hitchins-Loveday, C. Swanson, K. Mengersen Experimental study of the deposition of combustion aerosols in the human respiratory tract. J. Aerosol Sci. 36:939–957, 2005. doi:10.1016/j.jaerosci.2005.03.015

    Article  CAS  Google Scholar 

  64. Moskal A., L. Gradon Temporal and spatial deposition of aerosol particles in the upper human airways during breathing cycles. J. Aerosol Sci. 33:1525, 2002. doi:10.1016/S0021-8502(02)00108-8

    Article  CAS  Google Scholar 

  65. Nicolai T. Environmental air pollution and lung disease in children. Monaldi Arch. Chest Dis. 54(6):475–478, 1999

    PubMed  CAS  Google Scholar 

  66. Nowak N., P. P. Kakade, A. V. Annapragada Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390, 2003. doi:10.1114/1.1560632

    Article  PubMed  Google Scholar 

  67. Oberdorster G., M. J. Utell Ultrafine particles in the urban air: to the respiratory tract and beyond. Environ. Health Perspect. 110(8):A440–A441, 2002

    PubMed  Google Scholar 

  68. Pandya R. J., G. Solomon, A. Kinner, J. R. Balmes Diesel exhaust and asthma: hypotheses and molecular mechanisms of action. Environ. Health Perspect. 110:103–112, 2002

    PubMed  CAS  Google Scholar 

  69. Pedley T. J. Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9:229–274, 1977. doi:10.1146/annurev.fl.09.010177.001305

    Article  CAS  Google Scholar 

  70. Phalen R. F., M. J. Oldham, R. C. Mannix Cigarette smoke deposition in the tracheobronchial tree: evidence for colligative effects. Aerosol Sci. Technol. 20:215–226, 1994. doi:10.1080/02786829408959678

    Article  CAS  Google Scholar 

  71. Phalen R. F., M. J. Oldham, A. E. Nel Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol. Sci. 92(1):126–132, 2006. doi:10.1093/toxsci/kfj182

    Article  PubMed  CAS  Google Scholar 

  72. Robinson R. J., M. J. Oldham, R. E. Clinkenbeard, P. Rai Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model. Ann. Biomed. Eng. 34(3):373–383, 2006. doi:10.1007/s10439-005-9049-5

    Article  PubMed  Google Scholar 

  73. Schlesinger R. B., M. Lippmann Particle deposition in casts of the human upper tracheobronchial tree. Am. Ind. Hyg. Assoc. J. 33:237–251, 1972. doi:10.1080/0002889728506636

    PubMed  CAS  Google Scholar 

  74. Schwartz J. Air pollution and children’s health. Pediatrics 113(4):1037–1043, 2004

    PubMed  Google Scholar 

  75. Shi H., C. Kleinstreuer, Z. Zhang Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 128:697–706, 2006. doi:10.1115/1.2244574

    Article  PubMed  CAS  Google Scholar 

  76. Shi H., C. Kleinstreuer, Z. Zhang, C. S. Kim Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys. Fluids 16(7):2199–2213, 2004. doi:10.1063/1.1724830

    Article  CAS  Google Scholar 

  77. Smith S., Y. S. Cheng, H. C. Yeh Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Sci. Technol. 35(3):697–709, 2001. doi:10.1080/02786820152546743

    Article  CAS  Google Scholar 

  78. Sosnowski T. R., A. Moskal, L. Gradon Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal. Toxicol. 18(10):773–780, 2006. doi:10.1080/08958370600748737

    Article  PubMed  CAS  Google Scholar 

  79. Stahlhofen W., G. Rudolf, A. C. James Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2(3):285–308, 1989

    Google Scholar 

  80. Tannehill J. C., D. A. Anderson, R. H. Pletcher Computational Fluid Mechanics and Heat Transfer, 2 edn. Taylor and Francis, Washington, 1997

    Google Scholar 

  81. Tian L., G. Ahmadi Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38:377–397, 2007. doi:10.1016/j.jaerosci.2006.12.003

    Article  CAS  Google Scholar 

  82. Tu J., G. H. Yeoh, C. Liu Computational Fluid Dynamics: A Practical Approach. Butterworth-Heinemann, Amsterdam, 2007

    Google Scholar 

  83. U.S. Surgeon General, The Health Consequences of Involuntary Smoking: A Report of the Surgeon General (stock # 017-001-00458-9) PA: U.S. Government Printing Office, 1986.

  84. van Ertbruggen, C., C. Hirsch, and M. Paiva. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J. Appl. Physiol. 98(3):970–980, 2005. doi:10.1152/japplphysiol.00795.2004.

  85. Wang J. B., A. C. K. Lai A new drift-flux model for particle transport and deposition in human airways. J. Biomech. Eng. 128:97–105, 2006. doi:10.1115/1.2133763

    Article  PubMed  CAS  Google Scholar 

  86. Wilcox D. C. Turbulence Modeling for CFD, 2nd edn. DCW Industries, Inc., California, 1998

    Google Scholar 

  87. Wynder E. L., E. A. Graham Tobacco smoking as a possible etiologic factor in bronchiogenic carcinoma. a study of six hundred and eighty-four proved cases. JAMA 143:329–336, 1950

    CAS  Google Scholar 

  88. Xi J., P. W. Longest Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. ASME J. Biomech. Eng. 130:011008, 2007. doi:10.1115/1.2838039

    Article  Google Scholar 

  89. Xi J., P. W. Longest Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35(4):560–581, 2007. doi:10.1007/s10439-006-9245-y

    Article  PubMed  Google Scholar 

  90. Xi J., P. W. Longest, T. B. Martonen Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 104:1761–1777, 2008. doi:10.1152/japplphysiol.01233.2007

    Article  PubMed  Google Scholar 

  91. Zhang Z., C. Kleinstreuer Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Phys. 198(1):178–210, 2004. doi:10.1016/j.jcp.2003.11.034

    Article  Google Scholar 

  92. Zhang Z., C. Kleinstreuer, J. F. Donohue, C. S. Kim Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36(2):211–233, 2005. doi:10.1016/j.jaerosci.2004.08.006

    Article  CAS  Google Scholar 

  93. Zhang Z., C. Kleinstreuer, C. S. Kim Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33(2):257–281, 2002. doi:10.1016/S0021-8502(01)00170-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Philip Morris USA. The authors thank Dr. Beverly Cohen, NYU School of Medicine, for providing the tracheobronchial lung cast and describing the experimental setup. Assistance from Dr. James McLeskey, VCU Department of Mechanical Engineering, in preparing the tracheobronchial cast for imaging is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, J., Longest, P.W. Evaluation of a Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways. Ann Biomed Eng 36, 1714–1734 (2008). https://doi.org/10.1007/s10439-008-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9552-6

Keywords

Navigation