Skip to main content
Log in

Optical Vibrocardiography: A Novel Tool for the Optical Monitoring of Cardiac Activity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present an optical non-contact method for heart beat monitoring, based on the measurement of chest wall movements induced by the pumping action of the heart, which is eligible as a surrogate of electrocardiogram (ECG) in assessing both cardiac rate and heart rate variability (HRV). The method is based on the optical recording of the movements of the chest wall by means of laser Doppler interferometry.

To this aim, the ECG signal and the velocity of vibration of the chest wall, named optical vibrocardiography (VCG), were simultaneously recorded on 10 subjects. The time series built from the sequences of consecutive R waves (on ECG) and vibrocardiographic (VV) intervals were compared in terms of heart rate (HR). To evaluate the ability of VCG signals as quantitative marker of the autonomic activity, HRV descriptors were also calculated on both ECG and VCG time series. HR and HRV indices obtained from the proposed method agreed with the rate derived from ECG recordings (mean percent difference <3.1%). Our comparison concludes that optical VCG provides a reliable assessment of HR and HRV analysis, with no statistical differences in term of gender are present. Optical VCG appears promising as non-contact method to monitor the cardiac activity under specific conditions, e.g., in magnetic resonance environment, or to reduce exposure risks to workers subjected to hazardous conditions. The technique may be used also to monitor subjects, e.g., severely burned, for which contact with the skin needs to be minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Acharya R., Kumar A., Bhat P. S., Lim C. M., Iyengar S. S., Kannathal N., Krishnan S. M. (2004) Classification of cardiac abnormalities using heart rate signals. Med. Biol. Eng. Comput. 42(3):288–293

    Article  CAS  PubMed  Google Scholar 

  2. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. (1981) Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  3. American College of Cardiology Cardiovascular Technology Assessment Committee (1993) Heart rate variability for risk stratification of life-threatening arrhythmias. J. Am. Coll. Cardiol. 22: 948–950

    Article  Google Scholar 

  4. Augousti, A. T., F. X. Maletras, and J. Mason. Evaluation of cardiac monitoring using fiber optic plethysmography. Ann. Biomed. Eng. [DOI: 10.1007/s10439-006-9084-x] 2006

  5. Bland, J. M. and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8:307–310, 1986

    Google Scholar 

  6. Castellini P., Scalise L., Tomasini E. P. (1999) Teeth mobility measurement: a laser vibrometry approach. Rev. Sci. Instrum. 70(6):2850–2855

    Article  CAS  Google Scholar 

  7. Constant I., Laude D., Murat I., Elghozi J. L. (1999) Pulse rate variability is not a surrogate for heart rate variability. Clin. Sci. 97: 391–397

    Article  CAS  PubMed  Google Scholar 

  8. DeBoer R. W., Karemaker J. M., Strackee J. (1984) Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans. Biomed. Eng. 31(4):384–387

    CAS  PubMed  Google Scholar 

  9. De Chazal P., O’Dwyer M., Reilly R. B. (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7):1196–1206

    Article  PubMed  Google Scholar 

  10. Goldberger A. L. (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 6:87–91

    CAS  PubMed  Google Scholar 

  11. Harland C. J., Clark T. D., Prance R. J. (2002) Electric potential probes – new directions in the remote sensing of the human body. Meas. Sci. Technol. 13(2):163–169

    Article  CAS  Google Scholar 

  12. Inouye T., Shinosaki K., Sakamoto H., Toi S., Ukai S., Iyama A., Katsuda Y., Hirano M. (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79(3):204–210

    Article  CAS  PubMed  Google Scholar 

  13. Kamen P. W., Krum H., Tonkin A. M. (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity. Clin. Sci. 91:201–208

    CAS  PubMed  Google Scholar 

  14. Kanal E., Shellock F. G. (1990) Burns associated with clinical MR examinations. Radiology 175 585

    CAS  PubMed  Google Scholar 

  15. Kanal E., Shellock F. G. (1992) Patient monitoring during clinical MR imaging. Radiology 185(3):623–629

    CAS  PubMed  Google Scholar 

  16. Kaplan D. T. (1994) The analysis of variability. J. Cardiovasc. Electrophysiol. 5:16–19

    CAS  PubMed  Google Scholar 

  17. Kettenbach J., Kacher D. F., Koskinen S. K., Silverman S. G., Nabavi A., Gering D., Tempany C. M., Schwartz R. B., Kikinis R., Black P. M., Jolesz F. A. (2000) Interventional and intraoperative magnetic resonance imaging. Annu. Rev. Biomed. Eng. 2:661–690

    Article  CAS  PubMed  Google Scholar 

  18. Kugel H., Bremer C., Puschel M., Fischbach R., Lenzen H., Tombach B., Van Aken H., Heindel W. (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur. Radiol. 13(4):690–694

    PubMed  Google Scholar 

  19. Kuo C. D., Chen G. Y., Wang Y. Y., Hung M. J., Yang J. L. (2003) Characterization and quantification of the return map of RR intervals by Pearson coefficient in patients with acute myocardial infarction. Auton. Neurosci. 105(2):145–152

    Article  PubMed  Google Scholar 

  20. Lee S. W., Fischer P. F., Loth F., Royston T. J., Grogand J. K., Bassiounyd H. S. (2005) Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20:837–852

    Article  Google Scholar 

  21. Malik, M., A. J. Camm (eds) (2004) Dynamic Electrocardiography. New York: Blackwell Futura

  22. Malliani A., Pagani M., Lombardi F., Cerutti S. (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:1482–1492

    Google Scholar 

  23. Matsui T., Arai I., Gotoh S., Hattori H., Takase B., Kikuchi M., Ishihara M. (2005) A novel apparatus for non-contact measurement of heart rate variability: a system to prevent secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, in monitoring sepsis or in predicting multiple organ dysfunction syndrome. Biomed. Pharmacother. 59 (Suppl 1):S188–S191

    Article  CAS  PubMed  Google Scholar 

  24. Matsui T., Hagisawa K., Ishizuka T., Takase B., Ishihara M., Kikuchi M. (2004) A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans. Biomed. Eng. 51(12):2184–2188

    Article  PubMed  Google Scholar 

  25. Migliaro E. R., Canetti R., Contreras P., Hakas M., Eirea G., Machado A. (2004) Short-term studies of heart rate variability: comparison of two methods for recording. Physiol. Meas. 25(6):N15–N20

    Article  PubMed  Google Scholar 

  26. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell’Orto S., Piccaluga E., et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59(2):178–193

    CAS  PubMed  Google Scholar 

  27. Pan J., Tompkins W. J. (1985) Real Time QRS Detector algorithm. IEEE Trans. Biomed. Eng. 32(3):230–236

    CAS  PubMed  Google Scholar 

  28. Pordy L., Chesky K., Master A. M., Taymor R.C, Moser M. (1952) The dual displacement and velocity ballistocardiograph apparatus. Am. Heart J. 44(2):248–256

    Article  CAS  PubMed  Google Scholar 

  29. Rezek I. A., Roberts S. J. (1998) Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45(9): 1186–1191

    Article  CAS  PubMed  Google Scholar 

  30. Rosowski J. J., Mehta R. P., Merchant S. N. (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol. Neurotol. 24(2):165–175

    Article  PubMed  Google Scholar 

  31. Russell T. (2001) The management of burns. In: Ferrera P., Colucciello S., Marx J., Verdile V., Gibbs M. (eds) Trauma Management: An Emergency Medicine Approach. St. Louis (MO), Mosby, pp 549–565

    Google Scholar 

  32. Salerno D. M., Zanetti J., Green L., Mooney M., Madison J., Van Tassel R. (1991) Seismocardiographic changes associated with obstruction of coronary blood flow during balloon angioplasty. Am. J. Cardiol. 15;68(2):201–220

    Article  Google Scholar 

  33. Salerno D. M., Zanetti J. (1990) Seismocardiography: A new technique for recording cardiac vibrations. Concept, method and initial observations.J. Cardiovasc. Tech. 9,2: 111–118

    Google Scholar 

  34. Scalise, L., P. Castellini, U. Morbiducci, C. Del Gaudio, G. D’Avenio, M. Grigioni, and E. P. Tomasini. Laser vibrometry to study prosthetic mechanical heart valves. Proceedings on XII Mediterranean Conference on Medical and Biological Engineering and Computing (available in CD rom) (2004)

  35. Scalise, L., U. Morbiducci, and M. De Melis. A laser Doppler approach to cardiac motion monitoring: effects of surface and measurement position. Proceedings of SPIE VII International Conference on Vibration Measurements by Laser Techniques, 2006, 19–22 June, Ancona, Italy, 6345: 0D1-0D11

  36. Schwartz P. J., Priori S. G. (1990) Sympathetic nervous system and cardiac arrhythmias. In: Zipes D. P, Jalife J. (eds) Cardiac Electrophysiology. From Cell to Bedside. Philadelphia, W.B. Saunders, pp 330–343

    Google Scholar 

  37. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17:354–381

    Google Scholar 

  38. Taymor R. C., Pordy L., Chesky K., Moser M., Master A. M. (1952) The ballistocardiogram in coronary artery disease. J. Am. Med. Assoc. 9; 148(6):419–423

    Google Scholar 

  39. Tomasini E. P., Revel G. M., Castellini P. (2001) Laser Based Measurement, Encyclopaedia of Vibration Academic Press, London, 699–710

    Google Scholar 

  40. Tulppo M. P., Makikallio T. H., Takala T. E. S., Seppanen T., Huikuri H. V. (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271:H244–H252

    CAS  PubMed  Google Scholar 

  41. Woo M. A., Stevenson W. G., Moser D. K., Trelease R. B., Harper R. H. (1992) Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J. 123:704–707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Enrico Primo Tomasini and Dr. Giorgio Corbucci for the useful comments and the endless support to the research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Scalise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morbiducci, U., Scalise, L., De Melis, M. et al. Optical Vibrocardiography: A Novel Tool for the Optical Monitoring of Cardiac Activity. Ann Biomed Eng 35, 45–58 (2007). https://doi.org/10.1007/s10439-006-9202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9202-9

Keywords

Navigation