Skip to main content

Advertisement

Log in

Physiologic Pulsatile Flow Bioreactor Conditioning of Poly(ethylene glycol)-based Tissue Engineered Vascular Grafts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Mechanical conditioning represents a potential means to enhance the biochemical and biomechanical properties of tissue engineered vascular grafts (TEVGs). A pulsatile flow bioreactor was developed to allow shear and pulsatile stimulation of TEVGs. Physiological 120 mmHg/80 mmHg peak-to-trough pressure waveforms can be produced at both fetal and adult heart rates. Flow rates of 2 mL/sec, representative of flow through small diameter blood vessels, can be generated, resulting in a mean wall shear stress of ∼6 dynes/cm2 within the 3 mm ID constructs. When combined with non-thrombogenic poly(ethylene glycol) (PEG)-based hydrogels, which have tunable mechanical properties and tailorable biofunctionality, the bioreactor represents a flexible platform for exploring the impact of controlled biochemical and biomechanical stimuli on vascular graft cells. In the present study, the utility of this combined approach for improving TEVG outcome was investigated by encapsulating 10T-1/2 mouse smooth muscle progenitor cells within PEG-based hydrogels containing an adhesive ligand (RGDS) and a collagenase degradable sequence (LGPA). Constructs subjected to 7 weeks of biomechanical conditioning had significantly higher collagen levels and improved moduli relative to those grown under static conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.

Similar content being viewed by others

REFERENCES

  1. Anseth, K. S., C. N. Bowman, and L. BrannonPeppas. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Birukov, K., and V. Shirinsky. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell Biochem. 144:131–139, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Brossollet, L. Mechanical issues in vascular grafting: a review. Int. J. Artif. Organs 15:579–584, 1992.

    PubMed  CAS  Google Scholar 

  4. Bryant, S. B., R. J. Durand, and K. Anseth. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Bryant, S. J., C. R. Nuttelman, and K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11:439–457, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Bryant, S., K. Anseth, D. Lee, and D. Bader. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 22:1143–1149, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Bryant, S., T. Chowdhury, D. Lee, D. Bader, and K. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.

    Article  PubMed  Google Scholar 

  9. Burdick, J., and K. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Cappadona, C. et al. Phenotype dictates the growth response of vascular smooth muscle cells to pulse pressure in vitro. Exp. Cell Res. 250:174–186, 1999.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, G., and W. Briggs. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ. Res. 80:28–36, 1997.

    PubMed  CAS  Google Scholar 

  12. Chiquet, M., and M. Matthisson. Regulation of extracellular matrix synthesis by mechanical stress. Biochem. Cell Biol. 74:737–744, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Clerin, V. et al. Tissue engineering of arteries by directed remodeling of intact arterial segments. Tissue Engineering 9: 2003.

  14. Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Nat. Acad. Sci. U.S.A. 96:3104–3107, 1999.

    Article  CAS  Google Scholar 

  15. Faries, P. et al. A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts. J. Vasc. Surg. 32:1080–1090, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.

    Google Scholar 

  17. Gobin, A. S., and J. L. West. Cell migration through defined, synthetic extracellular matrix analogues. FASEB J. 16:2002.

  18. Gombotz, W. R., G. H. Wang, T. A. Horbett, and A. S. Hoffman. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25:1547–1562, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. A. 67:87–95, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Gregory, T. R. Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome 43:895–901, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Greisler, H. Interactions at the blood/material interface. Ann. Vasc. Surg. 4:98–103, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Hiles, M. et al. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J. Biomed. Mater. Res. 29:883–891, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Hill-West, J. L., S. M. Chowdhury, M. J. Slepian, and J. A. Hubbell. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Nat. Acad. Sci. U.S.A. 91:5967–5971, 1994.

    Article  CAS  Google Scholar 

  24. Hirschi, K. K., J. M. Burt, K. D. Hirschi, and C. Dai. Gap junction communication mediates TGF-β activation and endothelial-induced mural cell differentiation. Circ. Res. 93:429–437, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Isenberg, B., and R. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–939, 2003.

    Article  PubMed  Google Scholar 

  26. Jeong, S. I. et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26:1405–1411, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson, C., T. How, M. Scraggs, C. West, and J. Burns. A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Sci. Int. 109:169–182, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Kanda, K., and T. Matsuda. Mechanical stress induced cellular orientation and phenotypic modulation of 3D cultured smooth muscle cells. ASAIO 39: 1993.

  29. Kempczinski, R. (ed.) Vascular Surgery. Denver: WB Saunders, 2000.

    Google Scholar 

  30. Kim, B. S., J. Nikolovski, J. Bonadio, and D. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle cell tissue. Nat. Biotechnol. 17:979–983, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Ku, D., and C. Zhu. The mechanical environment of the artery. In: Hemodynamic Forces and Vascular Cell Biology, edited by B. Sumpio. Austin: RG Landes Company, 1993, pp. 1–23.

    Google Scholar 

  32. Kulik, T., and S. Alvarado. Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J. Cell. Physiol. 157:615–624, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Li, C., and Q. Xu. Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell. Signaling 12:435–445, 2000.

    Article  CAS  Google Scholar 

  34. Liu, V. A., and S. N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices 4:257–266, 2002.

    Article  CAS  Google Scholar 

  35. Long, J., and R. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Lu, H. H., M. D. Kofron, S. F. El-Amin, M. A. Attawia, and C. T. Laurencin. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices. Biochem. Biophys. Res. Commun. 305:882–889, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Miller, E. J., and S. Gay. Collagen – an Overview. Methods Enzymol. 82:3–32, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Niklason, L. et al. Functional arteries grown in vitro. Science 284:489–493, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Posey, J., and L. Geddes. Measurement of the modulus of elasticity of the arterial wall. Cardiovasc. Res. Ctr. Bull. 11:83–88, 1973.

    Google Scholar 

  40. Ross, J., and R. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22:477–490, 2003.

    Article  PubMed  CAS  Google Scholar 

  41. Schmedlen, R. H., W. M. Elbjeirami, Gobin, A. S., and J. L. West. Tissue engineered small-diameter vascular grafts. Clin. Plast. Surg. 30:507-+, 2003.

    Article  PubMed  Google Scholar 

  42. Solan, A., S. Mitchell, M. Moses, and L. E. Niklason. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue Eng. 9:579–586, 2003.

    Article  PubMed  CAS  Google Scholar 

  43. Tranquillo, R., T. Girton, B. Bromberek, T. Triebes, and D. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. Vacanti, J., and R. Langer. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:SI32–SI34, 1999.

    Article  PubMed  Google Scholar 

  45. West, J. L., and J. A. Hubbell. Photopolymerized hydrogel materials for drug delivery applications. Reactive Polym. 25:139–147, 1995.

    Article  CAS  Google Scholar 

  46. Whittemore, A., K. Kent, M. Donaldson, N. Couch, and J. Mannick. What is the proper role of polytetrafluoroethylene grafts in infrainguinal reconstruction? J. Vasc. Surg. 10:299–305, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Williams, C. G., A. N. Malik, T. K. Kim, P. N. Manson, and Jh, E. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Wilson, E. K. Sudhir, and H. Ives. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96:2364–2372, 1995.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge funding from the NIH and NSF and a Whitaker Foundation Graduate Research Fellowship to MKM. We thank Jane Grande-Allen, PhD for advice regarding mechanical testing and biochemical analyses, and Marcella Estrella for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M.S., McHale, M.K., Wang, E. et al. Physiologic Pulsatile Flow Bioreactor Conditioning of Poly(ethylene glycol)-based Tissue Engineered Vascular Grafts. Ann Biomed Eng 35, 190–200 (2007). https://doi.org/10.1007/s10439-006-9099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9099-3

Keywords

Navigation