Skip to main content

Advertisement

Log in

A Model for Detecting Balance Impairment and Estimating Falls Risk in the Elderly

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Traumatic falls are a prevalent and costly threat to elderly adults. Accurate risk assessment is necessary for reducing incidence of falls. The objective of this study was to test the feasibility of a balance impairment detection model using tasks of sample categorization and falls risk estimation. Model design included an artificial neural network and a statistical discrimination method. The first system produced an individual categorization value, which was then assessed in the second system for relative risk of falls, compared to a normative distribution of healthy elderly peers. Input data included leg muscle electromyographic amplitudes, temporal-distance measures of gait, and medio-lateral measures of whole body center of mass motion. These input data were compiled from a sample of healthy elderly adults (n = 19) and a sample with impaired balance (n = 10) to develop and test the model. Accuracy of sample categorization was assessed using a relative operating characteristic (ROC) value. For relative risk estimation, categorical delineation of risk level was adopted. Sample categorization results reached ROC values of 0.890. Relative risk was frequently assessed at high or very high risk for experiencing falls. Temporal-distance measures were most influential in categorization accuracy, producing the most consistent risk estimates. Combined inputs further improved model performance. This model shows potential for detecting balance impairment and estimating falls risk; thereby indicating need for referral for falls prevention intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Academy of Orthopaedic Surgeons. Don’t let a FALL be your last TRIP. 1998.

  2. Chau, T. A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods. Gait Posture 13:102–120, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Chou, L.-S., K. R. Kaufman, R. H. Brey, and L. F. Draganich. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture 13:17–26, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Chou, L. S., K. R. Kaufman, M. E. Hahn, and R. H. Brey. Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait Posture 18:125–133, 2003.

    Article  PubMed  Google Scholar 

  5. Coogler, C. E. Falls and imbalance. Rehab. Manag. (April/May), 53, 1992.

  6. Graafmans, W. C., M. E. Ooms, H. M. Hofstee, P. D. Bezemer, L. M. Bouter, and P. Lips. Falls in the elderly: A prospective study of risk factors and risk profiles. Am. J. Epidemiol. 143:1129–1136, 1996.

    CAS  PubMed  Google Scholar 

  7. Hahn, M. E., and L. S. Chou. Can motion of individual body segments identify dynamic instability in the elderly? Clin. Biomech. 18:737–744, 2003.

    Article  Google Scholar 

  8. Hahn, M. E., A. M. Farley, V. Lin, and L. S. Chou. Neural network estimation of balance control during locomotion. J. Biomech. 38:717–724, 2005.

    Article  PubMed  Google Scholar 

  9. Hahn, M. E., H. J. Lee, and L. S. Chou. Increased muscular challenge in older adults during obstructed gait. Gait Posture, in press.

  10. Halfon, P., Y. Eggli, G. Van Melle, and A. Vagnair. Risk of falls for hospitalized patients: A predictive model based on routinely available data. J. Clin. Epidemiol. 54:1258–1266, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Haykin, S. Neural Networks: A Comprehensive Foundation. New York: MacMillan College Publishing Co, 1994.

    Google Scholar 

  12. Holzreiter, S. H., and M. E. Kohle. Assessment of gait patterns using neural networks. J. Biomech. 26:45–651, 1993.

    Article  Google Scholar 

  13. Jian, Y., D. A. Winter, M. G. Ishac, and L. Gilchrist, Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22, 1993.

    Article  Google Scholar 

  14. Izumi, K., K. Makimoto, M. Kato, and T. Hiramatsu. Prospective study of fall risk assessment among institutionalized elderly in Japan. Nursing Health Sci. 4:141–147, 2002.

    Article  Google Scholar 

  15. Lafuente, R., J. M. Belda, J. Sanchez-Lacuesta, C. Soler, and J. Prat. Design and test of neural networks and statistical classifiers in computer-aided movement analysis: A case study on gait analysis. Clin. Biomech. 13:216–229, 1998.

    Article  Google Scholar 

  16. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2:164–168, 1944.

    Google Scholar 

  17. Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49:M72–M84, 1994.

    CAS  PubMed  Google Scholar 

  18. Marquardt, D. W. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441, 1963.

    Article  Google Scholar 

  19. Meglan, D. A. Enhanced Analysis of Human Locomotion, Ph.D. Dissertation, The Ohio State University, OH, USA, 1991.

  20. Prentice, S. D., A. E. Patla, and D. A. Stacey. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds. Exp. Brain Res. 123:474–480, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Prentice, S. D., A. E. Patla, and D. A. Stacey. Artificial neural network model for the generation of muscle activation patterns for human locomotion. J. Electromyo. Kinesiol. 11:19–30, 2001.

    Article  CAS  Google Scholar 

  22. Province, M. A. The effects of exercise on falls in elderly patients: A preplanned meta-analysis of the FICSIT trials. JAMA 273: 1341–1347, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Rumelhart, D. E., G. E. Hinton, and R. J. Williams. Learning representations by back-propagation errors. Nature 323:533–536, 1986.

    Article  Google Scholar 

  24. Savelberg, H. H., and A. L. de Lange. Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clin. Biomech. 14:585–92, 1999.

    Article  CAS  Google Scholar 

  25. Sepulveda, F., D. M. Wells, and C. L. Vaughan. A neural network representation of electromyography and joint dynamics in human gait. J. Biomech. 26:101–109, 1993.

    Article  CAS  PubMed  Google Scholar 

  26. Shumway-Cook, A., M. Baldwin, N. L. Polissar, and W. Gruber. Predicting the probability of falls in community-dwelling older adults. Phys. Ther. 77:812–819, 1997.

    CAS  PubMed  Google Scholar 

  27. Shumway-Cook, A., S. Brauer, and M. Woollacott. Predicting the probability of falls in community-dwelling older adults using the Timed Up & Go test. Phys. Ther. 80:896–903, 2000.

    CAS  PubMed  Google Scholar 

  28. Stalenhoef, P. A., J. P. M. Diedriks, J. A. Knottnerus, A. D. M. Kester, and H. F. J. M. Crebholder. A risk model for the prediction of recurrent falls in community-dwelling elderly: A prospective cohort study. J. Clin. Epidemiol. 55:1088–1094, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Su, F.-C., and W.-L. Wu. Design and testing of a genetic algorithm neural network in the assessment of gait patterns. Med. Eng. Phys. 22:67–74, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240:1285–1293, 1988.

    CAS  PubMed  Google Scholar 

  31. Topper, A. K., B. E. Maki, and P. J. Holliday. Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall? J. Am. Geriatr. Soc. 41:479–487, 1993.

    CAS  PubMed  Google Scholar 

  32. Tromp, A. M., S. M. F. Pluijm, J. H. Smit, D. J. H. Deeg, L. M. Bouter, and P. Lips. Fall-risk screening test: A prospective study on predictors for falls in community-dwelling elderly. J. Clin. Epidemiol. 54:837–844, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Wolfson, L., R. Whipple, C. Derby, J. Judge, M. King, P. Amerman, J. Schmidt, and D. Smyers. Balance and strength training in older adults: Intervention gains and Tai Chi maintenance. J. Am. Ger. Soc. 44: 498–506, 1996.

    CAS  Google Scholar 

  34. Woltring, H. J. A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Software 8:104–113, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Shan Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M.E., Chou, LS. A Model for Detecting Balance Impairment and Estimating Falls Risk in the Elderly. Ann Biomed Eng 33, 811–820 (2005). https://doi.org/10.1007/s10439-005-2867-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2867-7

Keywords

Navigation