Skip to main content
Log in

Dynamic optimal capital structure with regime switching

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

We investigate the optimal capital structure of a corporate when the dynamics of the assets (both growth rate and volatility) change following different states of the economy. Two structural models are examined in the paper. The first considers the case when the firm is not facing tax benefit and bankruptcy costs with a regime switching dynamics. This model extends the Black and Cox (J Financ 31:351–367, 1976) model to allow for regime switching risk. The second model incorporates both tax benefit and bankruptcy costs with a regime switching dynamics. This is is more realistic, and is an extension of the Leland (J Financ 49(4):1213–1252, 1994) model with regime switching risk. We obtain closed-form analytic solutions for the optimal capital structure and default barrier for both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that in our setting A is the transpose of the usual generator matrix of a Markov chain.

References

  • Black, F., Cox, J.C.: Valuing corporate securities: some effects of bond indenture provisions. J Financ 31, 351–367 (1976)

    Article  Google Scholar 

  • Brennan, M.J., Schwartz, E.S.: Corporate income taxes, valuation and the problem of optimal capital structure. J Bus 51, 103–114 (1978)

    Article  Google Scholar 

  • Briys, E., de Varenne, F.: Valuing risky fixed rate debt: an extension. J Financ Quant Anal 32, 239–248 (1997)

    Article  Google Scholar 

  • Cathcart, L., El-Jahel, L.: Valuation of defaultable bonds. J Fixed Income 8, 66–78 (1998)

    Article  Google Scholar 

  • Delianedis, G., Geske, R.: Credit Risk and Risk Neutral Default Probabilities: Information About Rating Migrations and Defaults. In: EFA 2003 Annual Conference Paper No. 962 (2003)

  • Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov models: Estimation and control. Applications of Mathematics, vol. 29, pp. xii+361. Springer, New York (1995)

  • Eom, Y.H., Helwege, J., Huang, J.: Structural models of corporate bond pricing: an empirical analysis. Rev Financ Stud 17, 499–544 (2004)

    Article  Google Scholar 

  • Ericsson, J., Reneby, J.: The Valuation of Corporate Liabilities: Theory and Tests, McGill University and Stockholm School of Economics, Working Paper (2002)

  • Ericsson, J., Reneby, J.: Estimating structural bond pricing models. J Bus 78(2), 707–735 (2005)

    Article  Google Scholar 

  • Fons, J.S.: Using default rates to model the term structure of credit risk. Financ Anal J 3, 25–32 (1994)

    Article  Google Scholar 

  • Giesecke, K., Longstaff, F., Schaefer, S., Strebulaev, I.: Corporate bond default risk: a 150-year perspective. J Financ Econ 102(2), 233–250 (2011)

    Article  Google Scholar 

  • Giesecke, K., Longstaff, F., Schaefer, S., Strebulaev, I.: Macroeconomic effects of corporate default crises: a long-term perspective. J Financ Econ 111(2), 297–310 (2014)

    Article  Google Scholar 

  • Hamilton, J.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384 (1989)

    Article  Google Scholar 

  • Huang, J., Zhou, H.: Specification Analysis of Structural Credit Risk Models. Working Paper, Federal Reserve Board (2008)

  • Huang, J., Huang, M.: How much of the corporate-treasury yield spread is due to credit risk? Rev Asset Pricing Stud 2(2), 153–202 (2012)

    Article  Google Scholar 

  • Jones, E., Mason, S., Rosenfeld, E.: Contingent claims analysis of corporate capital structures: an empirical investigation. J Financ 39, 611–625 (1984)

    Article  Google Scholar 

  • Kim, J., Ramaswamy, K., Sundaresan, S.: The Valuation of Corporate Fixed Income Securities. Working Paper, Wharton School, University of Pennsylvania (1993)

  • Leland, H.E.: Corporate debt value, bond covenants, and optimal capital structure. J Financ 49(4), 1213–1252 (1994)

  • Leland, H.E.: Agency costs, risk management, and capital structure. J Financ 53(4), 1213–1243 (1998)

  • Leland, H.E., Toft, K.B.: Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. J Financ 51, 987–1019 (1996)

    Article  Google Scholar 

  • Longstaff, F., Schwartz, E.: Valuing risky debt: a new approach. J Financ 50, 789–821 (1995)

    Article  Google Scholar 

  • Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J Financ 29, 449–470 (1974)

    Google Scholar 

  • Merton, R.C.: On the pricing of contingent claims and the Modigliani–Miller theorem. J Financ Econ 5, 241–249 (1977)

    Article  Google Scholar 

  • Modigliani, F., Miller, M.: The cost of capital, corporation finance and the theory of investment. Am Econ Rev 48(3), 261–297 (1958)

    Google Scholar 

  • Nielsen, L.T., Saa-Requejo, J., Santa-Clara, P.: Default Risk and Interest Rate Risk: The Term Structure of Default Spreads. Working Paper, INSEAD, Fontainebleau, France (1993)

  • Saá-Requejo, J., Santa-Clara, P.: Bond Pricing with Default Risk, Working Paper (1997)

  • Sarig, O., Warga, A.: Some empirical estimates of the risk structure of interest rates. J Financ 44, 1351–1360 (1989)

    Article  Google Scholar 

  • Zhou, C.: The term structure of credit spreads with jump risk. J Bank Financ 25, 2015–2040 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Elliott.

Additional information

Robert J. Elliott wishes to thank the SSHRC and NSERC.

Appendix

Appendix

Proof of Theorem 2

Note that

$$\begin{aligned} A=\begin{bmatrix} -\lambda _1&\lambda _2\\ \lambda _1&-\lambda _2 \\ \end{bmatrix}. \end{aligned}$$

Then the coupled homogeneous ODEs reduce to the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c+\lambda _1\big (P_2(x)-P_1(x)\big )=0,\\ P_1(v_1)=\min (v_1,c/r),\\ \lim \limits _{x\rightarrow \infty }P_1(x)=c/r. \end{array}\right. } \end{aligned}$$
$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _2^2P_2''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c+\lambda _2\big (P_1(x)-P_2(x)\big )=0,\\ P_2(v_2)=\min (v_2,c/r),\\ \lim \limits _{x\rightarrow \infty }P_2(x)=c/r. \end{array}\right. } \end{aligned}$$

For simplicity, we further assume that \(v_1\le v_2\le c/r\), as if \(v_i\ge c/r\), then \(P_i(v_i)=c/r\), and moreover \(P_i(x)=c/r\) for all \(x\ge v_i\) (as the equity holders will declare bankruptcy immediately at time 0). Note that the value of the default-free perpetual bond is \(c/r\). Intuitively, if the barrier \(v_i\ge c/r\), the equity holders choose to default immediately at time 0. To obtain the optimal values \(v_i\), we also impose the smooth pasting conditions at \(v_i\). Therefore

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c+\lambda _1\big (P_2(x)-P_1(x)\big )=0\\ P_1(v_1)=v_1\\ {\lim }_{x\rightarrow \infty }P_1(x)=c/r,\\ P_1'(x)\big |_{x=v_1}=1. \end{array}\right. } \end{aligned}$$
(4)
$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _2^2P_2''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c+\lambda _2\big (P_1(x)-P_2(x)\big )=0\\ P_2(v_2)=v_2\\ {\lim }_{x\rightarrow \infty }P_2(x)=c/r,\\ P_2'(x)\big |_{x=v_2}=1. \end{array}\right. } \end{aligned}$$
(5)

Therefore, when \(v_1\le v_2\le c/r\), we can write the coupled ODEs as follows. For \(x\in [0,v_1]\), we have

$$\begin{aligned} P_1(x)=P_2(x)=x. \end{aligned}$$
(6)

For \(x\in [v_1, v_2]\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c+\lambda _1\big (P_2(x)-P_1(x)\big )=0\\ P_2(x)=x. \end{array}\right. } \end{aligned}$$
(7)

For \(x\in [v_2, \infty )\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c+\lambda _1\big (P_2(x)-P_1(x)\big )=0,\\ \frac{1}{2}x^2\sigma _2^2P_1''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c+\lambda _2\big (P_1(x)-P_2(x)\big )=0. \end{array}\right. } \end{aligned}$$
(8)

Now (8) has an characteristic function

$$\begin{aligned} g_1(\beta )g_2(\beta )=\lambda _1\lambda _2, \end{aligned}$$
(9)

where

$$\begin{aligned} g_1(\beta )&=\lambda _1+r_1-\mu _1\beta -\frac{1}{2}\sigma _1^2\beta (\beta -1),\\ g_2(\beta )&=\lambda _2+r_2-\mu _2\beta -\frac{1}{2}\sigma _2^2\beta (\beta -1). \end{aligned}$$

This characteristic function has four distinct roots \(\beta _1<\beta _2<0<\beta _3<\beta _4\). To obtain a particular solution of (8), we consider

$$\begin{aligned} {\left\{ \begin{array}{ll} -r_1P^*_1+c+\lambda _1(P^*_2-P^*_1)=0\\ -r_2P^*_2+c+\lambda _2(P^*_1-P^*_2)=0. \end{array}\right. } \end{aligned}$$

This system reduces to

$$\begin{aligned} \begin{bmatrix} -(r_1+\lambda _1)&\lambda _1 \\ -(r_2+\lambda _2)&\lambda _2 \\ \end{bmatrix} \begin{bmatrix} P^*_1 \\ P^*_2 \\ \end{bmatrix} = \begin{bmatrix} -c \\ -c \\ \end{bmatrix}, \end{aligned}$$

and hence

$$\begin{aligned} \begin{bmatrix} P^*_1 \\ P^*_2 \\ \end{bmatrix}&= \begin{bmatrix} -(r_1+\lambda _1)&\lambda _1 \\ -(r_2+\lambda _2)&\lambda _2 \\ \end{bmatrix}^{-1} \begin{bmatrix} -c \\ -c \\ \end{bmatrix}\\&=\frac{1}{r_2\lambda _1-r_1\lambda _2} \begin{bmatrix} \lambda _2&-\lambda _1 \\ r_2+\lambda _2&-(r_1+\lambda _1) \\ \end{bmatrix} \begin{bmatrix} -c \\ -c \\ \end{bmatrix}\\&=\frac{1}{r_2\lambda _1-r_1\lambda _2} \begin{bmatrix} c(\lambda _1-\lambda _2) \\ c\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big ) \\ \end{bmatrix}, \end{aligned}$$

Thus a particular solution of (8) is

$$\begin{aligned} \begin{aligned} P^*_1&=\frac{c(\lambda _1-\lambda _2)}{r_2\lambda _1-r_1\lambda _2}\\ P^*_2&=\frac{c\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big )}{r_2\lambda _1-r_1\lambda _2}. \end{aligned} \end{aligned}$$
(10)

Therefore, the general form of the solution to (8) is

$$\begin{aligned} P_1(x)&=P^*_1+A_1x^{\beta _1}+A_2x^{\beta _2}+A_3x^{\beta _3}+A_4x^{\beta _4},\\ P_2(x)&=P^*_2+B_1x^{\beta _1}+B_2x^{\beta _2}+B_3x^{\beta _3}+B_4x^{\beta _4}, \end{aligned}$$

with \(B_i=l_iA_i\) and \(l_i=l(\beta _i)=g_1(\beta _i)/\lambda _1=\lambda _2/g_2(\beta _i)\).

When \(x\rightarrow \infty \), \(P_1(x)\) and \(P_2(x)\) are both bounded. Thus \(A_3=A_4=B_3=B_4=0\), and the solution is

$$\begin{aligned} \begin{aligned} P_1(x)&=P^*_1+A_1x^{\beta _1}+A_2x^{\beta _2},\\ P_2(x)&=P^*_2+B_1x^{\beta _1}+B_2x^{\beta _2}. \end{aligned} \end{aligned}$$
(11)

Next we solve (7). The first equation is

$$\begin{aligned} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c+\lambda _1\big (x-P_1(x)\big )=0. \end{aligned}$$
(12)

This is an inhomogeneous equation, and thus the solution can be written as

$$\begin{aligned} P_1(x)=C_1x^{\gamma _1}+C_2x^{\gamma _2}+\phi (x), \end{aligned}$$
(13)

where \(\phi (x)\) is a particular solution and \(\gamma _1\) and \(\gamma _2\) are the two roots of

$$\begin{aligned} \frac{1}{2}\sigma _1^2\gamma (\gamma -1)+\mu _1\gamma -r_1-\lambda _1=0. \end{aligned}$$
(14)

To obtain \(\phi (x)\), we assume that \(\phi (x)=ax+b\) and substitute it to Eq. (12). This yields

$$\begin{aligned} a\mu _1x-r_1(ax+b)+c-\lambda _1(ax+b)+\lambda _1 x=0, \end{aligned}$$

or

$$\begin{aligned} x\big ((\mu _1-r_1-\lambda _1)a+\lambda _1\big )+c-r_1b-\lambda _1b=0. \end{aligned}$$

Thus \(a=\lambda _1/(r_1+\lambda _1-\mu _1)\), \(b=c/(r_1+\lambda _1)\), and thus

$$\begin{aligned} \phi (x)=\frac{\lambda _1}{r_1+\lambda _1-\mu _1}x+\frac{c}{r_1+\lambda _1}. \end{aligned}$$
(15)

Now we solve for the coefficients \(A_i\), \(B_i\), \(C_i\) and the optimal values \(v_1\) and \(v_2\). Using the boundary and smooth pasting conditions for \(P_2(x)\) (see(5), (8)) at \(v_2\) with \(x\in [v_2,\infty )\),

$$\begin{aligned} {\left\{ \begin{array}{ll} P^*_2+B_1v_2^{\beta _1}+B_2v_2^{\beta _2}=v_2,\\ \beta _1B_1v_2^{\beta _1-1}+\beta _2B_2v_2^{\beta _2-1}=1. \end{array}\right. } \end{aligned}$$

or

$$\begin{aligned} {\left\{ \begin{array}{ll} l_1A_1v_2^{\beta _1}+l_2A_2v_2^{\beta _2}=v_2-P^*_2,\\ \beta _1l_1A_1v_2^{\beta _1}+\beta _2l_2A_2v_2^{\beta _2}=v_2. \end{array}\right. } \end{aligned}$$
(16)

Similarly, using the boundary and smooth pasting conditions for \(P_1(x)\) (see (4), (7)) at \(v_2\) with \(x\in [v_1,v_2]\),

$$\begin{aligned} {\left\{ \begin{array}{ll} P^*_1+A_1v_2^{\beta _1}+A_2v_2^{\beta _2}=C_1v_2^{\gamma _1}+C_2v_2^{\gamma _2}+\phi (v_2),\\ \beta _1A_1v_2^{\beta _1}+\beta _2A_2v_2^{\beta _2}=\gamma _1C_1v_2^{\gamma _1}+\gamma _2C_2v_2^{\gamma _2}+v_2\phi '(v_2). \end{array}\right. } \end{aligned}$$
(17)

Using the boundary and smooth pasting conditions for \(P_1(x)\) (see (4), (7)) at \(v_1\) with \(x\in [v_1,v_2]\)

$$\begin{aligned} {\left\{ \begin{array}{ll} C_1v_1^{\gamma _1}+C_2v_1^{\gamma _2}+\phi (v_1)=v_1,\\ \gamma _1C_1v_1^{\gamma _1}+\gamma _2C_2v_1^{\gamma _2}+v_1\phi '(v_1)=v_1. \end{array}\right. } \end{aligned}$$
(18)

Combining these equations, we can obtain the solutions \(v_1\) and \(v_2\). From (18), we have

$$\begin{aligned} F_1(v_1):= \begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \begin{bmatrix} v_1-\phi (v_1)\\ v_1-v_1\phi '(v_1) \end{bmatrix} =\begin{bmatrix} C_1v_1^{\gamma _1}\\ C_2v_1^{\gamma _2} \end{bmatrix}. \end{aligned}$$
(19)

From (16), we have

$$\begin{aligned} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix} =\begin{bmatrix} A_1v_2^{\beta _1}\\ A_2v_2^{\beta _2} \end{bmatrix}. \end{aligned}$$
(20)

Then, using (17) and (20), we have

$$\begin{aligned} \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix}&=\begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} A_1v_2^{\beta _1}\\ A_2v_2^{\beta _2} \end{bmatrix}\nonumber \\&= \begin{bmatrix} C_1v_2^{\gamma _1}+C_2v_2^{\gamma _2}+\phi (v_2)-P^*_2\\ \gamma _1C_1v_2^{\gamma _1}+\gamma _2C_2v_2^{\gamma _2}+v_2\phi '(v_2) \end{bmatrix}. \end{aligned}$$
(21)

This equation can be rewritten as

$$\begin{aligned} \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix} -\begin{bmatrix} \phi (v_2)-P^*_1 \\ v_2\phi '(v_2) \end{bmatrix} = \begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix} \begin{bmatrix} C_1v_2^{\gamma _1}\\ C_2v_2^{\gamma _2} \end{bmatrix}. \end{aligned}$$

Therefore

$$\begin{aligned} F_2(v_2)&:=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \left( \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix} -\begin{bmatrix} \phi (v_2)-P^*_1 \\ v_2\phi '(v_2) \end{bmatrix}\right) \nonumber \\&= \begin{bmatrix} C_1v_2^{\gamma _1}\\ C_2v_2^{\gamma _2} \end{bmatrix}. \end{aligned}$$
(22)

Hence, from (19) and (22) we have the equation

$$\begin{aligned} \begin{bmatrix} v_1^{-\gamma _1}&0\\ 0&v_1^{-\gamma _2} \end{bmatrix}F_1(v_1) =\begin{bmatrix} C_1\\ C_2 \end{bmatrix} =\begin{bmatrix} v_2^{-\gamma _1}&0\\ 0&v_2^{-\gamma _2} \end{bmatrix}F_2(x_2). \end{aligned}$$
(23)

In particular, for \(\phi (x)\) of the form in (15), we have from (19) and (22)

$$\begin{aligned} F_1(v_1)=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \begin{bmatrix} v_1-\frac{\lambda _1}{r_1+\lambda _1-\mu _1}v_1-\frac{c}{r_1+\lambda _1}\\ v_1-v_1\frac{\lambda _1}{r_1+\lambda _1-\mu _1} \end{bmatrix}, \end{aligned}$$
(24)

and

$$\begin{aligned} F_2(v_2)&=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \left( \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix}\right. \nonumber \\&\quad \left. -\begin{bmatrix} \frac{\lambda _1}{r_1+\lambda _1-\mu _1}v_2+\frac{c}{r_1+\lambda _1}-P^*_1 \\ v_2\frac{\lambda _1}{r_1+\lambda _1-\mu _1}. \end{bmatrix}\right) . \end{aligned}$$
(25)

Substituting \(F_1(v_1)\) and \(F_2(v_2)\) into (23), we can obtain the values for \(v_1\) and \(v_2\). Now we derive coefficients \(A_i\), \(B_i\), and \(C_i\). From (16), the coefficients \(A_1\) and \(A_2\) are give by

$$\begin{aligned} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} =\begin{bmatrix} l_1v_2^{\beta _1}&l_2v_2^{\beta _2} \\ \beta _1l_1v_2^{\beta _1}&\beta _2l_2v_2^{\beta _2} \end{bmatrix}^{-1} \begin{bmatrix} v_2-P^*_2 \\ v_2 \end{bmatrix}, \end{aligned}$$
(26)

and

$$\begin{aligned} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} =\begin{bmatrix} l_1A_1 \\ l_2A_2 \end{bmatrix}. \end{aligned}$$
(27)

From (18), we have

$$\begin{aligned} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}&=\begin{bmatrix} v_1^{\gamma _1}&v_1^{\gamma _2} \\ \gamma _1v_1^{\gamma _1}&\gamma _2v_1^{\gamma _2} \end{bmatrix}^{-1} \begin{bmatrix} v_1-\phi (v_1) \\ v_1-v_1\phi '(v_1) \end{bmatrix} \nonumber \\&=\begin{bmatrix} v_1^{\gamma _1}&v_1^{\gamma _2} \\ \gamma _1v_1^{\gamma _1}&\gamma _2v_1^{\gamma _2} \end{bmatrix}^{-1} \begin{bmatrix} v_1-\frac{\lambda _1}{r_1+\lambda _1-\mu _1}v_1-\frac{c}{r_1+\lambda _1} \\ v_1-v_1\frac{\lambda _1}{r_1+\lambda _1-\mu _1} \end{bmatrix}. \end{aligned}$$
(28)

With these coefficients, the value functions \(P_1(x)\) and \(P_2(x)\) become

$$\begin{aligned} P_1(x)={\left\{ \begin{array}{ll} A_1x^{\beta _1}+A_2x^{\beta _2}+\frac{c(\lambda _1-\lambda _2)}{r_2\lambda _1-r_1\lambda _2} \quad &{}\text {if }x>v_2,\\ C_1x^{\gamma _1}+C_2x^{\gamma _2}+\phi (x) &{}\text {if }v_1\le x\le v_2\\ x &{}\text {if }x\le v_1, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} P_2(x)={\left\{ \begin{array}{ll} B_1x^{\beta _1}+B_2x^{\beta _2}+\frac{c\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big )}{r_2\lambda _1-r_1\lambda _2} \quad &{}\text {if }x>v_2,\\ x &{}\text {if }x\le v_2, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \phi (x)=\frac{\lambda _1}{r_1+\lambda _1-\mu _1}x+\frac{c}{r_1+\lambda _1}. \end{aligned}$$

\(\square \)

Proof of Theorem 3

The coupled homogeneous ODEs reduce to the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c-c'+\lambda _1\big (P_2(x)-P_1(x)\big )=0,\\ P_1(v_1)=\min ((1-\alpha )v_i,(c-c')/r),\\ \lim _{x\rightarrow \infty }P_1(x)=(c-c')/r. \end{array}\right. } \end{aligned}$$
$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _2^2P_2''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c-c'+\lambda _2\big (P_1(x)-P_2(x)\big )=0,\\ P_2(v_2)=\min ((1-\alpha )v_i,(c-c')/r),\\ \lim _{x\rightarrow \infty }P_2(x)=(c-c')/r. \end{array}\right. } \end{aligned}$$

For simplicity, we assume that \((1-\alpha )v_1\le (1-\alpha )v_2\le (c-c')/r\), as if \((1-\alpha )v_i\ge (c-c')/r\), then \(P_i(v_i)=\min ((1-\alpha )v_i,(c-c')/r)=(c-c')/r\), and moreover \(P_i(x)=(c-c')/r\) for all \(x\ge v_i\). Note that the value of the default-free perpetual bond is \((c-c')/r\). Intuitively, if the barrier \(v_i\ge (c-c')/r\), the equity holders choose to default immediately. To obtain the optimal values \(v_i\), we also impose the smooth pasting conditions at \(v_i\). Therefore

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c-c'+\lambda _1\big (P_2(x)-P_1(x)\big )=0\\ P_1(v_1)=(1-\alpha )v_1\\ {\lim }_{x\rightarrow \infty }P_1(x)=(c-c')/r,\\ P_1'(x)\big |_{x=v_1}=1-\alpha . \end{array}\right. } \end{aligned}$$
(29)
$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _2^2P_2''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c-c'+\lambda _2\big (P_1(x)-P_2(x)\big )=0\\ P_2(v_2)=(1-\alpha )v_2\\ {\lim }_{x\rightarrow \infty }P_2(x)=(c-c')/r,\\ P_2'(x)\big |_{x=v_2}=1-\alpha . \end{array}\right. } \end{aligned}$$
(30)

Therefore, when \(v_1\le v_2\le (c-c')/r\), we can write the coupled ODEs as follows. For \(x\in [0,v_1]\), we have

$$\begin{aligned} P_1(x)=P_2(x)=(1-\alpha )x. \end{aligned}$$
(31)

For \(x\in [v_1, v_2]\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c-c'+\lambda _1\big (P_2(x)-P_1(x)\big )=0\\ P_2(x)=(1-\alpha )x. \end{array}\right. } \end{aligned}$$
(32)

For \(x\in [v_2, \infty )\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c-c'+\lambda _1\big (P_2(x)-P_1(x)\big )=0,\\ \frac{1}{2}x^2\sigma _2^2P_1''(x)+\mu _2xP_2'(x)-r_2P_2(x)+c-c'+\lambda _2\big (P_1(x)-P_2(x)\big )=0. \end{array}\right. } \end{aligned}$$
(33)

Now (33) has an characteristic function

$$\begin{aligned} g_1(\beta )g_2(\beta )=\lambda _1\lambda _2, \end{aligned}$$
(34)

where

$$\begin{aligned} g_1(\beta )&=\lambda _1+r_1-\mu _1\beta -\frac{1}{2}\sigma _1^2\beta (\beta -1),\\ g_2(\beta )&=\lambda _2+r_2-\mu _2\beta -\frac{1}{2}\sigma _2^2\beta (\beta -1). \end{aligned}$$

This characteristic function has four distinct roots \(\beta _1<\beta _2<0<\beta _3<\beta _4\). To obtain a particular solution of (8), we consider

$$\begin{aligned} {\left\{ \begin{array}{ll} -r_1Q^*_1+c-c'+\lambda _1(Q^*_2-Q^*_1)=0\\ -r_2Q^*_2+c-c'+\lambda _2(Q^*_1-Q^*_2)=0. \end{array}\right. } \end{aligned}$$

This system reduces to

$$\begin{aligned} \begin{bmatrix} -(r_1+\lambda _1)&\lambda _1 \\ -(r_2+\lambda _2)&\lambda _2 \\ \end{bmatrix} \begin{bmatrix} Q^*_1 \\ Q^*_2 \\ \end{bmatrix} = \begin{bmatrix} c'-c \\ c'-c \\ \end{bmatrix}, \end{aligned}$$

and hence

$$\begin{aligned} \begin{bmatrix} Q^*_1 \\ Q^*_2 \\ \end{bmatrix}&= \begin{bmatrix} -(r_1+\lambda _1)&\lambda _1 \\ -(r_2+\lambda _2)&\lambda _2 \\ \end{bmatrix}^{-1} \begin{bmatrix} c'-c \\ c'-c \\ \end{bmatrix}\\&=\frac{1}{r_2\lambda _1-r_1\lambda _2} \begin{bmatrix} \lambda _2&-\lambda _1 \\ r_2+\lambda _2&-(r_1+\lambda _1) \\ \end{bmatrix} \begin{bmatrix} c'-c \\ c'-c \\ \end{bmatrix}\\&=\frac{1}{r_2\lambda _1-r_1\lambda _2} \begin{bmatrix} (c-c')(\lambda _1-\lambda _2) \\ (c-c')\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big ) \\ \end{bmatrix}, \end{aligned}$$

Thus a particular solution of (8) is

$$\begin{aligned} \begin{aligned} Q^*_1&=\frac{(c-c')(\lambda _1-\lambda _2)}{r_2\lambda _1-r_1\lambda _2}\\ Q^*_2&=\frac{(c-c')\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big )}{r_2\lambda _1-r_1\lambda _2}. \end{aligned} \end{aligned}$$
(35)

Therefore the general form of the solution to (33) is

$$\begin{aligned} P_1(x)&=Q^*_1+A_1x^{\beta _1}+A_2x^{\beta _2}+A_3x^{\beta _3}+A_4x^{\beta _4},\\ P_2(x)&=Q^*_2+B_1x^{\beta _1}+B_2x^{\beta _2}+B_3x^{\beta _3}+B_4x^{\beta _4}, \end{aligned}$$

with \(B_i=l_iA_i\) and \(l_i=l(\beta _i)=g_1(\beta _i)/\lambda _1=\lambda _2/g_2(\beta _i)\).

When \(x\rightarrow \infty \), \(P_1(x)\) and \(P_2(x)\) are both bounded. Thus \(A_3=A_4=B_3=B_4=0\), and the solution is

$$\begin{aligned} \begin{aligned} P_1(x)&=Q^*_1+A_1x^{\beta _1}+A_2x^{\beta _2},\\ P_2(x)&=Q^*_2+B_1x^{\beta _1}+B_2x^{\beta _2}. \end{aligned} \end{aligned}$$
(36)

Next we solve (32). The first equation is

$$\begin{aligned} \frac{1}{2}x^2\sigma _1^2P_1''(x)+\mu _1xP_1'(x)-r_1P_1(x)+c-c'+\lambda _1\big ((1-\alpha )x-P_1(x)\big )=0. \end{aligned}$$
(37)

This is an inhomogeneous equation, and thus the solution can be written as

$$\begin{aligned} P_1(x)=C_1x^{\gamma _1}+C_2x^{\gamma _2}+\phi (x), \end{aligned}$$
(38)

where \(\phi (x)\) is a particular solution and \(\gamma _1\) and \(\gamma _2\) are the two roots of

$$\begin{aligned} \frac{1}{2}\sigma _1^2\gamma (\gamma -1)+\mu _1\gamma -r_1-\lambda _1=0. \end{aligned}$$
(39)

To obtain \(\phi (x)\), we assume that \(\phi (x)=ax+b\) and substitute it to Eq. (37). This yields

$$\begin{aligned} a\mu _1x-r_1(ax+b)+c-c'+\lambda _1(1-\alpha )x-\lambda _1(ax+b)=0, \end{aligned}$$

or

$$\begin{aligned} x\big ((\mu _1-r_1-\lambda _1)a+\lambda _1(1-\alpha )\big )+c-c'-r_1b-\lambda _1b=0. \end{aligned}$$

Thus \(a=\lambda _1(1-\alpha )/(r_1+\lambda _1-\mu _1)\), \(b=(c-c')/(r_1+\lambda _1)\), and thus

$$\begin{aligned} \phi (x)=\frac{\lambda _1(1-\alpha )}{r_1+\lambda _1-\mu _1}x+\frac{c-c'}{r_1+\lambda _1}. \end{aligned}$$
(40)

Now we solve for the coefficients \(A_i\), \(B_i\), \(C_i\) and the optimal values \(v_1\) and \(v_2\). Using the boundary and smooth pasting conditions for \(P_2(x)\) (see(30), (33)) at \(v_2\) with \(x\in [v_2,\infty )\),

$$\begin{aligned} {\left\{ \begin{array}{ll} Q^*_2+B_1v_2^{\beta _1}+B_2v_2^{\beta _2}=(1-\alpha )v_2,\\ \beta _1B_1v_2^{\beta _1-1}+\beta _2B_2v_2^{\beta _2-1}=(1-\alpha ). \end{array}\right. } \end{aligned}$$

or

$$\begin{aligned} {\left\{ \begin{array}{ll} l_1A_1v_2^{\beta _1}+l_2A_2v_2^{\beta _2}=(1-\alpha )v_2-Q^*_2,\\ \beta _1l_1A_1v_2^{\beta _1}+\beta _2l_2A_2v_2^{\beta _2}=(1-\alpha )v_2. \end{array}\right. } \end{aligned}$$
(41)

Similarly, using the boundary and smooth pasting conditions for \(P_1(x)\) (see (29), (32)) at \(v_2\) with \(x\in [v_1,v_2]\),

$$\begin{aligned} {\left\{ \begin{array}{ll} Q^*_1+A_1v_2^{\beta _1}+A_2v_2^{\beta _2}=C_1v_2^{\gamma _1}+C_2v_2^{\gamma _2}+\phi (v_2),\\ \beta _1A_1v_2^{\beta _1}+\beta _2A_2v_2^{\beta _2}=\gamma _1C_1v_2^{\gamma _1}+\gamma _2C_2v_2^{\gamma _2}+v_2\phi '(v_2). \end{array}\right. } \end{aligned}$$
(42)

Using the boundary and smooth pasting conditions for \(P_1(x)\) (see (29), (32)) at \(v_1\) with \(x\in [v_1,v_2]\)

$$\begin{aligned} {\left\{ \begin{array}{ll} C_1v_1^{\gamma _1}+C_2v_1^{\gamma _2}+\phi (v_1)=(1-\alpha )v_1,\\ \gamma _1C_1v_1^{\gamma _1}+\gamma _2C_2v_1^{\gamma _2}+v_1\phi '(v_1)=(1-\alpha )v_1. \end{array}\right. } \end{aligned}$$
(43)

Combining these equations, we can obtain the solutions \(v_1\) and \(v_2\). From (43), we have

$$\begin{aligned} F_1(v_1):= \begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_1-\phi (v_1)\\ (1-\alpha )v_1-v_1\phi '(v_1) \end{bmatrix} =\begin{bmatrix} C_1v_1^{\gamma _1}\\ C_2v_1^{\gamma _2} \end{bmatrix}. \end{aligned}$$
(44)

From (41), we have

$$\begin{aligned} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_2 \\ (1-\alpha )v_2 \end{bmatrix} =\begin{bmatrix} A_1v_2^{\beta _1}\\ A_2v_2^{\beta _2} \end{bmatrix}. \end{aligned}$$
(45)

Then, using (42) and (45), we have

$$\begin{aligned} \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_2 \\ (1-\alpha )v_2 \end{bmatrix}&=\begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} A_1v_2^{\beta _1}\\ A_2v_2^{\beta _2} \end{bmatrix}\nonumber \\&= \begin{bmatrix} C_1v_2^{\gamma _1}+C_2v_2^{\gamma _2}+\phi (v_2)-Q^*_1\\ \gamma _1C_1v_2^{\gamma _1}+\gamma _2C_2v_2^{\gamma _2}+v_2\phi '(v_2) \end{bmatrix}. \end{aligned}$$
(46)

This equation can be rewritten as

$$\begin{aligned} \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_1 \\ (1-\alpha )v_2 \end{bmatrix} -\begin{bmatrix} \phi (v_2)-Q^*_1 \\ v_2\phi '(v_2) \end{bmatrix} \!=\! \begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix} \begin{bmatrix} C_1v_2^{\gamma _1}\\ C_2v_2^{\gamma _2} \end{bmatrix}. \end{aligned}$$

Therefore

$$\begin{aligned} F_2(v_2)&:=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \left( \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_2 \\ (1-\alpha )v_2 \end{bmatrix}\right. \nonumber \\&\quad \left. -\begin{bmatrix} \phi (v_2)-Q^*_1 \\ v_2\phi '(v_2) \end{bmatrix}\right) \nonumber \\&= \begin{bmatrix} C_1v_2^{\gamma _1}\\ C_2v_2^{\gamma _2} \end{bmatrix}. \end{aligned}$$
(47)

Hence, from (44) and (47) we have the equation

$$\begin{aligned} \begin{bmatrix} v_1^{-\gamma _1}&0\\ 0&v_1^{-\gamma _2} \end{bmatrix}F_1(v_1) =\begin{bmatrix} C_1\\ C_2 \end{bmatrix} =\begin{bmatrix} v_2^{-\gamma _1}&0\\ 0&v_2^{-\gamma _2} \end{bmatrix}F_2(x_2). \end{aligned}$$
(48)

In particular, for \(\phi (x)\) of the form in (40), we have from (44) and (47)

$$\begin{aligned} F_1(v_1)=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_1-\frac{\lambda _1(1-\alpha )}{r_1+\lambda _1-\mu _1}v_1-\frac{c-c'}{r_1+\lambda _1}\\ (1-\alpha )v_1-v_1\frac{\lambda _1(1-\alpha )}{r_1+\lambda _1-\mu _1} \end{bmatrix}, \end{aligned}$$
(49)

and

$$\begin{aligned} F_2(v_2)&=\begin{bmatrix} 1&1 \\ \gamma _1&\gamma _2 \end{bmatrix}^{-1} \left( \begin{bmatrix} 1&1 \\ \beta _1&\beta _2 \end{bmatrix} \begin{bmatrix} l_1&l_2 \\ \beta _1l_1&\beta _2l_2 \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_2 \\ (1-\alpha )v_2 \end{bmatrix}\right. \nonumber \\&\quad \left. -\begin{bmatrix} \frac{\lambda _1(1-\alpha )}{r_1+\lambda _1-\mu _1}v_2+\frac{c-c'}{r_1+\lambda _1}-Q^*_1\\ (1-\alpha )v_2\frac{\lambda _1}{r_1+\lambda _1-\mu _1}. \end{bmatrix}\right) . \end{aligned}$$
(50)

Substituting \(F_1(v_1)\) and \(F_2(v_2)\) into (48), we can obtain the values for \(v_1\) and \(v_2\). Now we derive coefficients \(A_i\), \(B_i\), and \(C_i\). From (41), the coefficients \(A_1\) and \(A_2\) are give by

$$\begin{aligned} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} =\begin{bmatrix} l_1v_2^{\beta _1}&l_2v_2^{\beta _2} \\ \beta _1l_1v_2^{\beta _1}&\beta _2l_2v_2^{\beta _2} \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_2-Q^*_2 \\ (1-\alpha )v_2 \end{bmatrix}, \end{aligned}$$
(51)

and

$$\begin{aligned} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} =\begin{bmatrix} l_1A_1 \\ l_2A_2 \end{bmatrix}. \end{aligned}$$
(52)

From (43), we have

$$\begin{aligned} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}&=\begin{bmatrix} v_1^{\gamma _1}&v_1^{\gamma _2} \\ \gamma _1v_1^{\gamma _1}&\gamma _2v_2^{\gamma _2} \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_1-\phi (v_1) \\ (1-\alpha )v_1-v_1\phi '(v_1) \end{bmatrix}\end{aligned}$$
(53)
$$\begin{aligned}&=\begin{bmatrix} v_1^{\gamma _1}&v_1^{\gamma _2} \\ \gamma _1v_1^{\gamma _1}&\gamma _2v_1^{\gamma _2} \end{bmatrix}^{-1} \begin{bmatrix} (1-\alpha )v_1-\frac{\lambda _1}{r_1+\lambda _1-\mu _1}v_1-\frac{c-c'}{r_1+\lambda _1} \\ (1-\alpha )v_1-v_1\frac{\lambda _1}{r_1+\lambda _1-\mu _1} \end{bmatrix}. \end{aligned}$$
(54)

With these coefficients, the value functions \(P_1(x)\) and \(P_2(x)\) become

$$\begin{aligned} P_1(x)={\left\{ \begin{array}{ll} A_1x^{\beta _1}+A_2x^{\beta _2}+\frac{(c-c')(\lambda _1-\lambda _2)}{r_2\lambda _1-r_1\lambda _2} \quad &{}\text {if }x>v_2,\\ C_1x^{\gamma _1}+C_2x^{\gamma _2}+\phi (x) &{}\text {if }v_1\le x\le v_2\\ (1-\alpha )x &{}\text {if }x\le v_1, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} P_2(x)={\left\{ \begin{array}{ll} B_1x^{\beta _1}+B_2x^{\beta _2}+\frac{(c-c')\big ((r_1+\lambda _1)-(r_2+\lambda _2)\big )}{r_2\lambda _1-r_1\lambda _2} \quad &{}\text {if }x>v_2,\\ (1-\alpha )x &{}\text {if }x\le v_2, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \phi (x)=\frac{\lambda _1(1-\alpha )}{r_1+\lambda _1-\mu _1}x+\frac{c-c'}{r_1+\lambda _1}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, R.J., Shen, J. Dynamic optimal capital structure with regime switching. Ann Finance 11, 199–220 (2015). https://doi.org/10.1007/s10436-015-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-015-0260-6

Keywords

JEL Classification

Navigation