Skip to main content
Log in

Nonlinear integral resonant controller for vibration reduction in nonlinear systems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new nonlinear integral resonant controller (NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce high-amplitude nonlinear vibration around the fundamental resonance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results. The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode, unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seigler, T., Ghasemi, A. H., Salehian, A.: Distributed actuation requirements of piezoelectric structures under servoconstraints. J. Intell. Mater. Syst. Struct. 22, 1227–1238 (2011). doi:10.1177/1045389X11411222

  2. Seigler, T., Ghasemi, A.: Specified motion of piezoelectrically actuated structures. J. Vib. Acoust. 134, 021002 (2012)

    Article  Google Scholar 

  3. Daraji, A.H., Hale, J.M.: Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams. Smart Mater. Struct. 23, 115018 (2014)

    Article  Google Scholar 

  4. Li, S., Li, J., Mo, Y. et al.: Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator. Smart Mater. Struct. 23, 015006 (2014)

  5. Omidi, E., Mahmoodi, S.N.: Multiple mode spatial vibration reduction in flexible beams using \(\text{ H }_{2}\)- and \(\text{ H }_{\infty }\)-modified positive position feedback. J. Vib. Acoust. 137, 011004 (2015)

    Article  Google Scholar 

  6. Omidi, E., Mahmoodi, S. N.: Hybrid positive feedback control for active vibration attenuation of flexible structures. IEEE/ASME Trans. Mechatron. (2014). doi:10.1109/TMECH.2014.2354599

  7. Omidi, E., Mahmoodi, S. N.: Consensus positive position feedback control for vibration attenuation of smart structures. Smart Mater. Struct. 24, 045016 (2015)

  8. Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches. Springer, New York (2012)

    MATH  Google Scholar 

  9. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)

    MATH  Google Scholar 

  10. Hosseini, S.M., Shooshtari, A., Kalhori, H.: Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn. 78, 571–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lazarus, A., Thomas, O., Deü, J.: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49, 35–51 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mahmoodi, S.N., Jalili, N., Khadem, S.E.: An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J. Sound and Vib. 311, 1409–1419 (2008)

    Article  Google Scholar 

  13. Oueini, S.S., Nayfeh, A.H.: Single-mode control of a cantilever beam under principal parametric excitation. J. Sound Vib. 224, 33–47 (1999)

    Article  Google Scholar 

  14. Dai, L., Sun, L.: Vibration control of a translating beam with an active control strategy on the basis of the fuzzy sliding mode control. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE), Anonymous 4B (2013)

  15. Omidi, E., Mahmoodi, S.N.: Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn. 79, 835–849 (2015)

    Article  MATH  Google Scholar 

  16. El-Ganaini, W., Saeed, N., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72, 517–537 (2013)

    Article  MathSciNet  Google Scholar 

  17. Omidi, E., Mahmoodi, S.N.: Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems. Commun. Nonlinear Sci. Numer. Simul. 22, 149–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory. 50, 134–149 (2012)

    Article  Google Scholar 

  19. Zhao, Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308, 212–230 (2007)

    Article  Google Scholar 

  20. Shao, X., Fu, Y., Chen, Y.: Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field. Smart Mater. Struct. 24, 055023 (2015)

  21. Meyer, Y., Cumunel, G.: Active vibration Isolation with a MEMS device. Effects of nonlinearities on control efficiency. Smart Mater. Struct. 24, 085004 (2015)

    Article  Google Scholar 

  22. Omidi, E., Mahmoodi, S. N.: Nonlinear vibration control of flexible structures using nonlinear modified positive position feedback approach. In: Proceedings of ASME Dynamic Systems and Control Conference, San Antonio, TX, USA, Anonymous pp. V003T52A002 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nima Mahmoodi.

Appendix

Appendix

The coefficients of the time-domain response of Eq. (17) are as follows

$$\begin{aligned} V_1= & {} \left( {\frac{\hat{{\lambda }}U_1 }{4\omega _\mathrm{m}^2 +\omega _N^2 }-\frac{2\hat{{\delta }}^{2}U_1 U_5 }{4\omega _\mathrm{m}^2 +\omega _N^2 }} \right) \left( {\omega _N -2\mathrm{i}\omega _\mathrm{m} } \right) \\&+\frac{\hat{{\delta }}^{2}U_1^2 }{16\omega _\mathrm{m}^2 +\omega _N^2 } \left( {4\mathrm{i}\omega _\mathrm{m} -\omega _{_{N}} } \right) \\&+\frac{\hat{{\delta }}^{2}D_1 A(T_1 )}{( {4\omega _\mathrm{m}^2 +\omega _N^2 } )^{2}}( {\omega _N^2 -4\omega _\mathrm{m}^2 -4\mathrm{i}\omega _\mathrm{m} \omega _{_{N}} } ) ,\\ V_2= & {} \left( {\frac{\hat{{\lambda }}U_2 }{9\omega _\mathrm{m}^2 +\omega _N^2 }-\frac{2\hat{{\delta }}^{2}U_2 U_5 }{9\omega _\mathrm{m}^2 +\omega _N^2 }} \right) \left( {\omega _{_{N}} -3\mathrm{i}\omega _\mathrm{m} } \right) ,\\ V_3= & {} \left( {\frac{\hat{{\lambda }}U_3 }{\Omega ^{2}+\omega _N^2 }-\frac{2\hat{{\delta }}^{2}U_3 U_5 }{\varOmega ^{2}+\omega _N^2 }} \right) \left( {\omega _{_{N}} -\mathrm{i}\varOmega } \right) ,\\ V_4= & {} \frac{\hat{{\lambda }}D_1 A(T_1 )}{( {\omega _\mathrm{m}^2 +\omega _N^2 } )^{2}}( {\omega _\mathrm{m}^2 -\omega _{_{N}}^2 +2\mathrm{i}\omega _\mathrm{m} \omega _{_{N}} } ), \\ V_5= & {} \frac{\hat{{\delta }}^{2}U_2^2 }{81\omega _\mathrm{m}^2 +\omega _N^2 }\left( {9\mathrm{i}\omega _\mathrm{m} -\omega _{_{N}} } \right) ,\\ V_6= & {} \frac{\hat{{\delta }}^{2}U_3^2 }{4\varOmega ^{2}+\omega _N^2 }\left( {2\mathrm{i}\varOmega -\omega _{_{N}} } \right) ,\\ V_7= & {} \frac{\hat{{\delta }}^{2}U_4^2 }{\omega _2 }, \quad V_8 =\frac{2\hat{{\delta }}^{2}U_1 U_2 }{25\omega _\mathrm{m}^2 +\omega _N^2 }\left( {5\mathrm{i}\omega _\mathrm{m} -\omega _{_{N}} } \right) ,\\ V_9= & {} \frac{2\hat{{\delta }}^{2}U_1 U_3 }{\left( {2\omega _\mathrm{m} +\varOmega } \right) ^{2}+\omega _N^2 }\left[ {(2\omega _\mathrm{m} +\varOmega )\mathrm{i}-\omega _{_{N}} } \right] , \\ V_{10}= & {} \frac{\hat{{\delta }}^{2}U_1 U_4 }{\omega _\mathrm{m}^2 +\omega _N^2 }\left( {\mathrm{i}\omega _\mathrm{m} -\omega _{_{N}} } \right) ,\\ V_{11}= & {} \frac{2\hat{{\delta }}^{2}U_2 U_3 }{\left( {3\omega _\mathrm{m} +\varOmega } \right) ^{2}+\omega _N^2 }\left[ {(3\omega _\mathrm{m} +\varOmega )\mathrm{i}-\omega _{_{N}} } \right] , \\ V_{12}= & {} \frac{2\hat{{\delta }}^{2}U_2 U_4 }{9\omega _\mathrm{m}^2 +4\omega _N^2 }\left( {3\mathrm{i}\omega _\mathrm{m} -2\omega _{_{N}} } \right) ,\\ V_{13}= & {} \frac{2\hat{{\delta }}^{2}U_3 U_4 }{\varOmega ^{2}+4\omega _N^2 }\left( {\varOmega \mathrm{i}-2\omega _{_{N}} } \right) , \\ V_{14}= & {} \left( {\hat{{\lambda }}-\frac{D_1 }{\hat{{\tau }}}-\hat{{\delta }}^{2}U_5 } \right) U_5 . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, E., Mahmoodi, S.N. Nonlinear integral resonant controller for vibration reduction in nonlinear systems. Acta Mech. Sin. 32, 925–934 (2016). https://doi.org/10.1007/s10409-016-0577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0577-z

Keywords

Navigation