Skip to main content
Log in

Flapping dynamics of a flexible propulsor near ground

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The flapping motion of a flexible propulsor near the ground was simulated using the immersed boundary method. The hydrodynamic benefits of the propulsor near the ground were explored by varying the heaving frequency (St) of the leading edge of the flexible propulsor. Propulsion near the ground had some advantages in generating thrust and propelling faster than propulsion away from the ground. The mode analysis and flapping amplitude along the Lagrangian coordinate were examined to analyze the kinematics as a function of the ground proximity (d) and St. The trailing edge amplitude (\(a_\mathrm{tail}\)) and the net thrust (\(\overline{{F}}_x\)) were influenced by St of the flexible propulsor. The vortical structures in the wake were analyzed for different flapping conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993)

    Google Scholar 

  2. Blake, R.W.: The energetics of hovering in the mandarin fish (synchropus picturatus). J. Exp. Biol. 82, 25–33 (1979)

    Google Scholar 

  3. Baudinette, R.V., Schmidt-Nielsen, K.: Energy cost of gliding flight in herring gulls. Nature 248, 83–84 (1974)

    Article  Google Scholar 

  4. Rayner, J.M.V.: On the aerodynamics of animal flight in ground effect. Philos. Trans. R. Soc. B 334, 119–128 (1991)

    Article  Google Scholar 

  5. Blake, R.W.: Mechanics of gliding birds with special reference to the influence of ground effect. J. Biomech. 16, 649–654 (1983)

    Article  Google Scholar 

  6. Hainsworth, F.R.: Induced drag savings from ground effect and formation flight in brown pelicans. J. Exp. Biol. 135, 431–444 (1988)

    Google Scholar 

  7. Nowroozi, B.N., Strother, J.A., Horton, J.M., et al.: Whole-body lift and ground effect during pectoral fin locomotion in the northern spearnose poacher ( agonopsis vulsa). J. Zool. 112, 393–402 (2009)

    Article  Google Scholar 

  8. Park, H., Choi, H.: Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213, 3269–3279 (2010)

    Article  Google Scholar 

  9. Tanida, Y.: Ground effect in flight. JSME Int. J. Ser. B. 44, 481–486 (2001)

    Article  Google Scholar 

  10. Truong, T.V., Byun, D., Kim, M.J., et al.: Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. Bioinspiration Biomim. 8, 036007 (2013)

    Article  Google Scholar 

  11. Blevins, E., Lauder, G.V.: Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspiration Biomim. 8, 016005 (2013)

    Article  Google Scholar 

  12. Iosilevskii, G.: Asymptotic theory of an oscillating wing section in weak ground effect. Eur. J. Mech. B/Fluids 27, 477–490 (2008)

    Article  MATH  Google Scholar 

  13. Quinn, D.B., Lauder, G.V., Smits, A.J.: Flexible propulsors in ground effect. Bioinspiration Biomim. 9, 036008 (2014)

    Article  Google Scholar 

  14. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, L., Peskin, C.S.: Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452–468 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, Y., Peskin, C.S.: Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19, 053103 (2007)

    Article  MATH  Google Scholar 

  17. Huang, W.-X., Shin, S.J., Sung, H.J.: Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 2206–2228 (2007)

  18. Huang, W.-X., Sung, H.J.: An immersed boundary method for fluid-flexible structure interaction. Comput. Methods Appl. Mech. Eng. 198, 2650–2661 (2009)

    Article  MATH  Google Scholar 

  19. Zhong, G., Sun, X.: New simulation strategy for an oscillating cascade in turbomachinery using immersed-boundary method. J. Propul. Power 25, 312–321 (2009)

    Article  Google Scholar 

  20. Kim, S., Huang, W.-X., Sung, H.J.: Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511–521 (2010)

    Article  MATH  Google Scholar 

  21. Uddin, E., Huang, W.-X., Sung, H.J.: Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Uddin, E., Huang, W.-X., Sung, H.J.: Actively flapping tandem flexible flags in a viscous flow. J. Fluid Mech. 780, 120–142 (2015)

    Article  MathSciNet  Google Scholar 

  23. Zhu, X., He, G., Zhang, X.: Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil. Comput. Fluids 97, 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zhu, X., He, G., Zhang, X.: Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Lett. 113, 238105 (2014)

    Article  Google Scholar 

  25. Liao, C.-C., Lin, C.-A.: Simulation of natural and forced convection flows with moving embedded object using immersed boundary method. Comput. Methods Appl. Mech. Eng. 213–216, 58–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.Z., Kang, W., Sung, H.J.: Assessment of the organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations. Exp. Fluids 38, 485–493 (2005)

  27. Nagendra, K., Tafti, D.K., Viswanath, K.: A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid based solvers. J. Comput. Phys. 267, 225–246 (2014)

    Article  MathSciNet  Google Scholar 

  28. Shin, S.J., Huang, W.-X., Sung, H.J.: Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. Int. J. Numer. Methods Fluids 58, 263–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, K., Baek, S.-J., Sung, H.J.: An implicit velocity decoupling procedure for incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)

  30. Quinn, D.B., Lauder, G.V., Smits, A.J.: Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250–267 (2014)

    Article  Google Scholar 

  31. Park, T.S., Sung, H.J.: Development of a near-wall turbulence model and application to jet impingement heat transfer. Int. J. Heat Fluid Fl. 22, 10–18 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Creative Research Initiatives (Grant 2016-004749) program of the National Research Foundation of Korea (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Jin Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Park, S.G., Kim, B. et al. Flapping dynamics of a flexible propulsor near ground. Acta Mech. Sin. 32, 991–1000 (2016). https://doi.org/10.1007/s10409-016-0571-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0571-5

Keywords

Navigation