Skip to main content
Log in

Structural subgrid-scale modeling for large-eddy simulation: A review

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Accurately modeling nonlinear interactions in turbulence is one of the key challenges for large-eddy simulation (LES) of turbulence. In this article, we review recent studies on structural subgrid scale modeling, focusing on evaluating how well these models predict the effects of small scales. The article discusses a priori and a posteriori test results. Other nonlinear models are briefly discussed, and future prospects are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kandea, Y., Ishihara, T.: High-resolution direct numerical simulation of turbulence. J. Turbul. 7, 155–162 (2006)

    Google Scholar 

  2. Gad-el-hak, M.: Fluid mechanics from the beginning to the third millennium. Int. J. Eng. Ed. 14, 177–185 (1998)

    Google Scholar 

  3. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  7. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  8. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)

    Article  MATH  Google Scholar 

  9. Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. Proceeding of the IBM Science Computer Symposium Environmental Sciences, Yorktown Heights, NY (1967)

  10. Antonopoulos-Domis, M.: Large-eddy simulation of a passive scalar in isotropic turbulence. J. Fluid Mech. 104, 55–79 (1981)

    Article  MATH  Google Scholar 

  11. Bou-Zeid, E., Vercauteren, N., Parlange, M.B., et al.: Scale dependence of subgrid-scale model coefficients: an a priori study. Phys. Fluids 20, 106–115 (2008)

    Article  MATH  Google Scholar 

  12. Germano, M., Piomelli, U., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  13. Piomelli, U.: High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids 5, 1484–1490 (1993)

    Article  Google Scholar 

  14. Lu, H., Rutland, C.J., Smith, L.M.: A priori tests of one-equation LES modeling of rotating turbulence. J. Turbul. 8, 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cambon, C., Mansour, N.N., Godeferd, F.S.: Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith, L.M., Waleffe, F.: Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11, 1608–1622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, G.W., Rubinstein, R., Wang, L.P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)

    Article  MATH  Google Scholar 

  18. He, G.W., Wang, M., Lele, S.K.: On the computation of space-time correlations by large-eddy simulation. Phys. Fluids 16, 3859–3867 (2004)

    Article  MATH  Google Scholar 

  19. Yang, Y., He, G.W., Wang, L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbul. 9, 1–24 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Jin, G.D., He, G.W., Wang, L.P.: Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Phys. Fluids 22, 055106 (2010)

    Article  MATH  Google Scholar 

  21. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. AIAA Paper No. 80–1357, (1980)

  22. Pomraning, E., Rutland, C.J.: Dynamic one-equation nonviscosity large-eddy simulation model. AIAA J. 40, 689–701 (2002)

    Article  Google Scholar 

  23. Lu, H., Porté-Agel, F.: A modulated gradient model for large-eddy simulation: Application to a neutral atmospheric boundary layer. Phys. Fluids 22, 015109 (2010)

    Article  MATH  Google Scholar 

  24. Lu, H.: Assessment of the modulated gradient model in decaying isotropic turbulence. Theor. Appl. Mech. Lett. 1, 041004 (2011)

    Article  Google Scholar 

  25. Lu, H., Porté-Agel, F.: A modulated gradient model for scalar transport in large-eddy simulation of the atmospheric boundary layer. Phys. Fluids 25, 015110 (2013)

    Article  Google Scholar 

  26. Lu, H., Porté-Agel, F.: On the development of a dynamic non-linear closure for large-eddy simulation of the atmospheric boundary layer. Boundary-Layer Meteorol. 151, 429–451 (2014)

    Article  Google Scholar 

  27. Shamsoddin, S., Porté-Agel, F.: Large eddy simulation of vertical axis wind turbine wakes. Energies 7, 890–912 (2014)

    Article  Google Scholar 

  28. Cheng, W.C., Porté-Agel, F.: Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block. Int. J. Heat Fluid Flow 44, 301–311 (2013)

    Article  Google Scholar 

  29. Cheng, W.-C., Porté-Agel, F.: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study. Boundary-Layer Meteorol. 155, 249–270 (2015)

    Article  Google Scholar 

  30. Ghaisas, N.S., Frankel, S.H.: A priori evaluation of large eddy simulation subgrid-scale scalar flux models in isotropic passive-scalar and anisotropic buoyancy-driven homogeneous turbulence. J. Turbul. 15, 88–121 (2014)

    Article  MathSciNet  Google Scholar 

  31. Ghaisas, N.S., Frankel, S.H.: Dynamic gradient models for the sub-grid scale stress tensor and scalar flux vector in large eddy simulation. J. Turbul. 17, 30–50 (2015)

    Article  MathSciNet  Google Scholar 

  32. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)

    Article  Google Scholar 

  33. Lu, H., Porté-Agel, F.: On the impact of wind farms on a convective atmospheric boundary layer. Boundary-Layer Meteorol. 157, 81–96 (2015)

    Article  Google Scholar 

  34. Balarac, G., Sommer, J.L., Meunier, X., et al.: A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations. Phys. Fluids 25, 075107 (2013)

  35. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 3186–3196 (1993)

    Article  MATH  Google Scholar 

  36. Vreman, B., Geurts, B., Kuerten, H.: On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6, 4057–4059 (1994)

    Article  MATH  Google Scholar 

  37. Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kobayashi, H., Shimomura, Y.: The performance of dynamic subgrid-scale models in the large eddy simulation of rotating homogeneous turbulence. Phys. Fluids 13, 2350–2360 (2001)

    Article  MATH  Google Scholar 

  39. Lu, H., Rutland, C.J., Smith, L.M.: A posteriori tests of one-equation LES modeling of rotating turbulence. Int. J. Mod. Phys. C 19, 1949–1964 (2008)

    Article  MATH  Google Scholar 

  40. Lu, H.: One-equation LES modeling of rotating turbulence. Dissertation, University of Wisconsin-Madison (2007)

  41. Basdevant, C., Sadourny, R.: Modélisation des échelles virtuelles dans la simulation numérique des écoulements turbulents bidimensionels. J. Méc. Théor. Appl. 1, 243–269 (1983) (in French)

  42. Ferziger, J.H.: Large Eddy Simulation: A Short Course. Stanford University, Stanford (2000)

    Google Scholar 

  43. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moeng, C.-H.: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984)

    Article  Google Scholar 

  45. Kim, W.-W., Menon, S.: A new dynamic one-equation subgrid-scale model for large eddy simulations. AIAA Paper 1995–356 (1995)

  46. Sone, K., Menon, S.: Effect of subgrid modeling on the in-cylinder unsteady mixing process in a direct injection engine. J. Eng. Gas Turbines Power 125, 435–443 (2003)

    Article  Google Scholar 

  47. Yoshizawa, A., Horiuti, K.: A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)

    Article  Google Scholar 

  48. Chumakov, S.G., Rutland, C.J.: Dynamic structure subgrid-scale models for large eddy simulation. Int. J. Numer. Meth. Fluids 47, 911–923 (2005)

    Article  MATH  Google Scholar 

  49. Jhavar, R., Rutland, C.J.: Using large eddy simulations to study mixing effects in early injection diesel engine combustion. SAE Technical Papers, 2006-01-0871 (2006)

  50. Hu, B., Jhavar, R., Singh, S., et al.: Combustion modeling of diesel combustion with partially premixed conditions. SAE Technical Papers, 2007-01-0163 (2007)

  51. Hu, B., Rutland, C.J., Shethaji, T.A.: A mixed-mode combustion model for large-eddy simulation of diesel engines. Combust. Sci. Tech. 182, 1279–1320 (2010)

    Article  Google Scholar 

  52. Banerjee, S., Rutland, C.J.: Study on spray induced turbulence using large eddy simulations. At. Sprays 4, 285–316 (2015)

    Article  Google Scholar 

  53. Piomelli, U., Moin, P., Ferziger, J.H.: Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids 31, 1884–1891 (1988)

    Article  Google Scholar 

  54. Liu, S., Meneveau, C., Katz, J.: On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119 (1994)

    Article  Google Scholar 

  55. Chumakov, S.G.: Statistics of subgrid-scale stress states in homogeneous isotropic turbulence. J. Fluid Mech. 562, 405–414 (2006)

    Article  MATH  Google Scholar 

  56. Piomelli, U., Zang, T.A., Speziale, C.G., et al.: On the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids A 2, 257–265 (1990)

  57. Porté-Agel, F., Meneveau, C., Parlange, M.B.: A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Moeng, C.-H., Wyngaard, J.C.: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 45, 3575–3587 (1988)

    Google Scholar 

  59. Mason, P.J.: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516 (1989)

    Article  Google Scholar 

  60. Moeng, C.-H., Rotunno, R.: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci. 47, 1149–1162 (1990)

    Article  Google Scholar 

  61. Wyngaard, J.: Structure of the PBL. In: Venkatram, A., Wyngaard, J. (eds.) Lectures on air pollution modeling. American Meteorological Society, Boston (1988)

    Google Scholar 

  62. Lenschow, D.H., Wyngaard, J.C., Pennell, W.T.: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci. 37, 1313–1326 (1980)

    Article  Google Scholar 

  63. Rutland, C.J.: Large-eddy simulations for internal combustion engines: a review. Int. J. Eng. Res. 12, 1–31 (2011)

    Article  Google Scholar 

  64. Tsang, C.-W., Trujillo, M.F., Rutland, C.J.: Large-eddy simulation of shear flows and high-speed vaporizing liquid fuel sprays. Comput. Fluids 105, 262–279 (2014)

    Article  MathSciNet  Google Scholar 

  65. Engine Combustion Network (ECN) website: http://www.sandia.gov/ecn/index.php

  66. Lund, T.S., Novikov, E.A.: Parametrization of subgrid-scale stress by the velocity gradient tensor. CTR Annu. Res. Briefs, 27–43 (1992)

  67. Zheng, Q.-S.: Theory of representations for tensor functions: A unified invariant approach to constitutive equations. Appl. Mech. Rev. 47, 545–587 (1994)

    Article  Google Scholar 

  68. Huang, Y.-N., Lu, H.: Dyadic method for tensor functions. Acta Mech. Sin. 18, 398–406 (2002)

    Article  MathSciNet  Google Scholar 

  69. Kosović, B.: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech. 336, 151–182 (1997)

    Article  MATH  Google Scholar 

  70. Horiuti, K.: Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence generation. J. Fluid Mech. 491, 65–100 (2003)

    Article  MATH  Google Scholar 

  71. Mu noz Esparza, D., Kosović, B., Carcía-Sánchez, C., et al.: Nesting turbulence in an offshore convective boundary layer using large-eddy simulations. Boundary-Layer Meteorol. 151, 453–478 (2014)

  72. Yang, Z., Cui, G., Xu, C., et al.: Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model. J. Turbul. 13, 1–20 (2012)

  73. Wang, B.-C., Bergstrom, D.J.: A dynamic nonlinear subgrid-scale stress model. Phys. Fluids 17, 035109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  75. Speziale, C.G.: Subgrid scale stress models for the large-eddy simulation of rotating turbulent flows. Geophys. Astrophys. Fluid Dyn. 33, 199–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  76. Katul, G.G., Porporato, A., Nikora, V.: Existence of \(k^{-1}\) power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg’s eddy viscosity. Phys. Rev. E 86, 066311 (2012)

    Article  Google Scholar 

  77. She, Z.-S., Leveque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)

    Article  Google Scholar 

  78. Stevens, R., Wilczek, M., Meneveau, C.: Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888–907 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The contributions of collaborators identified in the cited literature were invaluable in giving content to this article. We are grateful to Dr. Guowei He for stimulating discussions and thoughtful advice. This material is based on work supported by the startup funding provided by HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Rutland, C.J. Structural subgrid-scale modeling for large-eddy simulation: A review. Acta Mech. Sin. 32, 567–578 (2016). https://doi.org/10.1007/s10409-016-0556-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0556-4

Keywords

Navigation