Skip to main content
Log in

Viscous fluid damping in a laterally oscillating finger of a comb-drive micro-resonator based on micro-polar fluid theory

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bao, M.-H.: Micromechanical Transducers, Pressure Sensors, Accelerometers and Gyroscopes, Handbook of Sensors & Actuators, Elsevier Science, Amsterdam (2000)

  2. Bircumshaw, B., Liu, G., Takeuchi, H., et al.: The radial bulk annular resonator: towards a \(50\Omega \) RF MEMS filter. In: Proceedings 12th International Conference Solid State Sensors, Actuators and Microsystems, Boston (2003)

  3. Nguyen, T.-C.H., Howe, R.T.: An integrated CMOS micromechanical resonator high-Q oscillator. IEEE J. Solid-State Circuits. 34, 440–455 (1999)

    Article  Google Scholar 

  4. Cleland, A.N., Roukes, M.L.: A nano metre-scale mechanical electrometer. Nature 392, 160–162 (1998)

    Article  Google Scholar 

  5. Burns, D.W., Zook, J.D., Horning, R.D., et al.: Sealed-cavity resonant microbeam pressure sensor. Sens. Actuators A 48, 179–186 (1995)

    Article  Google Scholar 

  6. Yasumura, K.Y., Stowe, T.D., Chow, E.M., et al.: Quality factor in micro- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)

    Article  Google Scholar 

  7. Burns, D.W., Horning, R.D., Herb, W.R., et al.: Sealed-cavity resonant microbeam accelerometer. Sens. Actuators A. 53, 249–255 (1996)

    Article  Google Scholar 

  8. Stephens, D.G., Scavullo, M.A.: Investigation of air damping of circular and rectangular plates, a cylinder, and a sphere, National Aeronautics and Space Administration, Washington, D. C. (1965)

  9. Newell, W.E.: Miniturization of tuning forks. Science 161, 1320–1326 (1968)

    Article  Google Scholar 

  10. Bao, M., Yang, H.: Squeeze film air damping in MEMS. Sens. Actuators A. 136, 3–27 (2007)

    Article  Google Scholar 

  11. Vemuri, S.K.: Behavioral modeling of viscous damping in MEMS. [M.S. Thesis], Department of Electrical Engineering and Computer Science, University of Carnegie Mellon (2000)

  12. Andrews, M., Harris, I., Turner, G.: A comparison of squeeze-film theory with measurements on a microstructure. Sens. Actuators A. 36, 79–87 (1993)

    Article  Google Scholar 

  13. Tang, W.C., Nguyen, T.-C.H., Howe, R.T.: Laterally driven polysilicon resonator microstructures. Sens. Actuators A. 20, 25–32 (1989)

    Article  Google Scholar 

  14. Wang, W., Jia, J., Li, J.: Slide film damping in microelectromechanical system device. J. Nanoeng. Nanosyst. 227, 162–170 (2013)

    Google Scholar 

  15. Hutcherson, S.M.: Theoretical and numerical studies of the air damping of micro-resonators in the non-continuum regime. [M.S. Thesis], G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology (2004)

  16. Cho, Y.H., Pisano, A.P., Howe, R.T.: Viscous damping model for laterally oscillating microstructures. J. Microelectromech. Syst. 3, 81–87 (1994)

    Article  Google Scholar 

  17. Veijola, T., Turowski, M.: Compact damping models for laterally moving microstructures with gas-rarefaction effects. J. Microelectromech. Syst. 10, 263–273 (2001)

    Article  Google Scholar 

  18. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  19. Eringen, A.C.: Microcontinuum Field Theories II. Fluent media. Springer, New York (2001)

    MATH  Google Scholar 

  20. Eringen, A.C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  21. Ye, S., Zhu, K., Wang, W.: Laminar flow of micropolar fluid in rectangular microchannels. Acta Mech. Sin. 22, 403–408 (2006)

    Article  MATH  Google Scholar 

  22. Kucaba-Pietal, A.: Microchannels flow modeling with the micro-polar fluid theory. Bull. Pol. Acad. Sci. 53, 209–214 (2004)

    Google Scholar 

  23. Gad-el-Hak, M.: The fluid mechanics of microdevices-the freeman scholar lecture. J. Fluids. Eng. 121, 5–33 (1999)

    Article  Google Scholar 

  24. Peschel, G., Adlfinger, K.H.: Viscosity anomalies in liquid surface zones III. The experimental method. Berichte der Bunsengesellschaft für physikalische. Chemie 74, 351–357 (1970)

    Google Scholar 

  25. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, J., Liang, C., Lee, J.D.: Theory and simulation of micropolar fluid dynamics. Proc. IMechE, Part N: J. Nanoeng. Nanosyst. 224, 31–39 (2010)

    Google Scholar 

  27. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  28. Ariman, T., Turk, M.A., Sylvester, N.D.: Microcontinuum fluid mechanics-a review. Int. J. Eng. Sci. 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  29. Rezazadeh, G., Ghanbari, M., Mirzaee, I., et al.: On the modeling of piezo-electrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement 43, 1516–1524 (2010)

    Article  Google Scholar 

  30. Hutton, D.V.: Fundamentals of Finite Element Analysis. McGraw-Hill, New York (2004)

    Google Scholar 

  31. Vahdat, A.S., Rezazadeh, G.: Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J. Frankl. Inst. 348, 622–639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the critical and helpful comments of anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azma, S., Rezazadeh, G., Shabani, R. et al. Viscous fluid damping in a laterally oscillating finger of a comb-drive micro-resonator based on micro-polar fluid theory. Acta Mech. Sin. 32, 397–405 (2016). https://doi.org/10.1007/s10409-015-0550-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0550-2

Keywords

Navigation