Skip to main content
Log in

Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory, the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff’s hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct time-integration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed. Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ansari, R., Faghih Shojaei, M., Gholami, R., et al.: Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams. Int. J. Non-Linear Mech. 50, 127–135 (2013)

  2. Farokhi, H., Ghayesh, M.H.: Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int. J. Eng. Sci. 91, 12–33 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ansari, R., Gholami, R., Faghih Shojaei, M., et al.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos. Struct. 100, 385–397 (2013)

  4. Ghayesh, M.H., Farokhi, H.: Coupled longitudinal-transverse-rotational behaviour of shear deformable microbeams. Compos. Part B 77, 319–328 (2015)

    Article  Google Scholar 

  5. Sahmani, S., Ansari, R., Gholami, R., et al.: Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos. Part B 51, 44–53 (2013)

  6. Wang, Z., Zhao, Y.: Self-instability and bending behaviors of nano plates. Acta Mech. Solida Sin. 22, 630–643 (2009)

    Article  Google Scholar 

  7. Ghayesh, M.H., Farokhi, H.: Internal energy transfer in dynamical behaviour of Timoshenko microarches. Math. Comput. Simul. 112, 28–39 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  Google Scholar 

  10. Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

  11. Fleck, N.A., Muller, G.M., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

  12. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

    Article  MathSciNet  Google Scholar 

  13. Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Y.-G., Lin, W.-H., Feng, Z.-J., et al.: Characterization of extensional multi-layer microbeams in pull-in phenomenon and vibrations. Int. J. Mech. Sci. 54, 225–233 (2012)

  15. Jomehzadeh, E., Noori, H.R., Saidi, A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Article  Google Scholar 

  16. Hashemi, S.H., Samaei, A.T.: Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory. Physica E 43, 1400–1404 (2011)

    Article  Google Scholar 

  17. Nabian, A., Rezazadeh, G., Almassi, M., et al.: On the stability of a functionally graded rectangular micro-plate subjected to hydrostatic and nonlinear electrostatic pressures. Acta Mech. Solida Sin. 26, 205–220 (2013)

  18. Roque, C.M.C., Ferreira, A.J.M., Reddy, J.N.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37, 4626–4633 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ramezani, S.: A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int. J. Mech. Sci. 57, 34–42 (2012)

    Article  Google Scholar 

  20. Li, A., Zhou, S., Zhou, S., et al.: A size-dependent model for bi-layered Kirchhoff micro-plate based on strain gradient elasticity theory. Compos. Struct. 113, 272–280 (2014)

  21. Thai, H.-T., Choi, D.-H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

  22. Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  23. Gholipour, A., Farokhi, H., Ghayesh, M.H.: In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79, 1771–1785 (2014)

  24. Strutt, J.W.: Some general theorems relating to vibrations. Proc. London Math. Soc. s1-4, 357–368 (1871)

  25. Junkins, J.L., Kim, Y.: Introduction to Dynamics and Control of Flexible Structures. American Institute of Aeronautics & Astronautics, New York (1993)

  26. Ghayesh, M.H.: Coupled longitudinal-transverse dynamics of an axially accelerating beam. J. Sound Vib. 331, 5107–5124 (2012)

    Article  Google Scholar 

  27. Yang, F., Chong, A.C.M., Lam, D.C.C., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

  28. Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  29. Rao, S.S.: Mechanical Vibrations. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  30. Farokhi, H., Ghayesh, M., Amabili, M.: Nonlinear resonant behavior of microbeams over the buckled state. Appl. Phys. A 113, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghayesh, M., Farokhi, H., Amabili, M.: Coupled nonlinear size-dependent behaviour of microbeams. Appl. Phys. A 112, 329–338 (2013)

    Article  MATH  Google Scholar 

  32. Ghayesh, M.H.: On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study. Acta Mech. Solida Sin. 24, 373–382 (2011)

    Article  Google Scholar 

  33. Ghayesh, M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010)

    Article  Google Scholar 

  34. Ghayesh, M.H., Kazemirad, S., Amabili, M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, H., Ghayesh, M.H. Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities. Acta Mech. Sin. 32, 469–480 (2016). https://doi.org/10.1007/s10409-015-0536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0536-0

Keywords

Navigation