Skip to main content
Log in

Effect of quadratic pressure gradient term on a one-dimensional moving boundary problem based on modified Darcy’s law

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecting the quadratic pressure gradient term in the governing equations. Based on these concerns, in consideration of the quadratic pressure gradient term, a basic moving boundary model is constructed for a one-dimensional seepage flow problem with a threshold pressure gradient. Owing to a strong nonlinearity and the existing moving boundary in the mathematical model, a corresponding numerical solution method is presented. First, a spatial coordinate transformation method is adopted in order to transform the system of partial differential equations with moving boundary conditions into a closed system with fixed boundary conditions; then the solution can be stably numerically obtained by a fully implicit finite-difference method. The validity of the numerical method is verified by a published exact analytical solution. Furthermore, to compare with Darcy’s flow problem, the exact analytical solution for the case of Darcy’s flow considering the quadratic pressure gradient term is also derived by an inverse Laplace transform. A comparison of these model solutions leads to the conclusion that such moving boundary problems must incorporate the quadratic pressure gradient term in their governing equations; the sensitive effects of the quadratic pressure gradient term tend to diminish, with the dimensionless threshold pressure gradient increasing for the one-dimensional problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Huang, Y.Z., Yang, Z.M., He, Y., et al.: An overview on nonlinear porous flow in low permeability porous Media. Theor. Appl. Mech. Lett. 3, 022001 (2013)

    Article  Google Scholar 

  2. Monteiro, P.J.M., Rycroft, C.H., Barenblatt, G.I.: A mathematical model of fluid and gas flow in nanoporous media. Proc. Natl. Acad. Sci. USA 109, 20309–20313 (2012)

    Article  Google Scholar 

  3. Balhoff, M., Sanchez-Rivera, D., Kwok, A., et al.: Numerical algorithms for network modeling of yield stress and other non-Newtonian fluids in porous media. Transp. Porous Media 93, 363–379 (2012)

    Article  MathSciNet  Google Scholar 

  4. Yu, R.Z., Bian, Y.N., Li, Y., et al.: Non-Darcy flow numerical simulation of XPJ low permeability reservoir. J. Pet. Sci. Eng. 92–93, 40–47 (2012)

    Google Scholar 

  5. Yu, R.Z., Bian, Y.N., Zhou, S., et al.: Nonlinear flow numerical simulation of low-permeability reservoir. J. Cent. South Univ. Technol. 19, 1980–1987 (2012)

    Article  Google Scholar 

  6. Guo, J.J., Zhang, S., Zhang, L.H., et al.: Well testing analysis for horizontal well with consideration of threshold pressure gradient in tight gas reservoirs. J. Hydrodyn. 24, 561–568 (2012)

    Article  Google Scholar 

  7. Luo, W.J., Wang, X.D.: Effect of a moving boundary on the fluid transient flow in low permeability Reservoirs. J. Hydrodyn. 24, 391–398 (2012)

    Article  Google Scholar 

  8. Yao, J., Liu, W.C., Chen, Z.X.: Numerical solution of a moving boundary problem of one-dimensional flow in semi-infinite long porous media with threshold pressure gradient. Math. Probl. Eng. 2013, 384246 (2013)

    MathSciNet  Google Scholar 

  9. Zeng, B.Q., Cheng, L.S., Li, C.L.: Low velocity non-linear flow in ultra-low permeability reservoir. J. Pet. Sci. Eng. 80, 1–6 (2012)

    Article  Google Scholar 

  10. Liu, W.C., Yao, J., Wang, Y.Y.: Exact analytical solutions of moving boundary problems of one-dimensional flow in semi-infinite long porous media with threshold pressure gradient. Int. J. Heat Mass Transf. 55, 6017–6022 (2012)

    Article  Google Scholar 

  11. Liu, W.C., Yao, J., Chen, Z.X., et al.: Analytical solution of a double moving boundary problem for nonlinear flows in one-dimensional semi-infinite long porous media with low permeability. Acta Mech. Sin. 30, 50–58 (2014)

    Article  MathSciNet  Google Scholar 

  12. Zhu, W.Y., Song, H.Q., Huang, X.H., et al.: Pressure characteristics and effective deployment in a water—bearing tight gas reservoir with low-velocity non-Darcy flow. Energy Fuels 25, 1111–1117 (2011)

    Article  Google Scholar 

  13. Beygi, M.E., Rashidi, F.: Analytical solutions to gas flow problems in low permeability porous media. Transp. Porous Media 87, 421–436 (2011)

    Article  MathSciNet  Google Scholar 

  14. Cai, J.C., Yu, B.M.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89, 251–263 (2011)

    Article  Google Scholar 

  15. Wang, X.W., Yang, Z.M., Qi, Y.D., et al.: Effect of absorption boundary layer on nonlinear flow in low permeability porous media. J. Cent. South Univ. Technol. 18, 1299–1303 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jing, W., Liu, H.Q., Pang, Z.X., et al.: The investigation of threshold pressure gradient of foam flooding in porous media. Pet. Sci. Technol. 29, 2460–2470 (2011)

  17. Xu, Q.Y., Liu, X.G., Yang, Z.M., et al.: The model and algorithm of a new numerical simulation software for low permeability reservoirs. J. Pet. Sci. Eng. 78, 239–242 (2011)

    Article  Google Scholar 

  18. Yao, Y.D., Ge, J.L.: Characteristics of non-Darcy flow in low-permeability reservoirs. Pet. Sci. 8, 55–62 (2011)

    Article  Google Scholar 

  19. Civan, F.: Porous Media Transport Phenomena. JohnWiley & Sons Press, Inc, Hoboken (2011)

    Book  Google Scholar 

  20. Song, F.Q., Wang, J.D., Liu, H.L.: Static threshold pressure gradient characteristics of liquid influenced by boundary wettability. Chin. Phys. Lett. 27, 024704 (2010)

    Article  Google Scholar 

  21. Daprà, I., Scarpi, G.: Unsteady simple shear flow in a viscoplastic fluid: comparison between analytical and numerical solutions. Rheol. Acta 49, 15–22 (2010)

    Article  Google Scholar 

  22. Xie, K.H., Wang, K., Wang, Y.L., et al.: Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient. Comput. Geotech. 37, 487–493 (2010)

    Article  Google Scholar 

  23. Yue, X.A., Wei, H.G., Zhang, L.J., et al.: Low pressure gas percolation characteristic in ultra-low permeability porous media. Transp. Porous Media 85, 333–345 (2010)

    Article  Google Scholar 

  24. Yun, M.J., Yu, B.M., Lu, J.D., et al.: Fractal analysis of Herschel-Bulkley fluid flow in porous media. Int. J. Heat Mass Transf. 53, 3570–3574 (2010)

    Article  MATH  Google Scholar 

  25. Li, Y., Yu, B.M.: Study of the starting pressure gradient in branching network. Sci. China Technol. Sci. 53, 2397–2403 (2010)

    Article  MATH  Google Scholar 

  26. Zhao, Y.S., Kumar, L., Paso, K., et al.: Gelation behavior of model wax-oil and crude oil systems and yield stress model development. Energy Fuels 26, 6323–6331 (2012)

    Article  Google Scholar 

  27. Fossen, M., Øyangen, T., Velle, O.J.: Effect of the pipe diameter on the restart pressure of a gelled waxy crude oil. Energy Fuels 27, 3685–3691 (2013)

    Article  Google Scholar 

  28. Papanastasiou, T.C., Boudouvis, A.G.: Flows of viscoplastic materials: models and computation. Comput. Struct. 64, 677–694 (1997)

    Article  MATH  Google Scholar 

  29. Prada, A., Civan, F.: Modification of Darcy’s law for the threshold pressure gradient. J. Pet. Sci. Eng. 22, 237–240 (1999)

    Article  Google Scholar 

  30. Nedoma, J.: Numerical solution of a Stefan-like problem in Bingham rheology. Math. Comput. Simul. 61, 271–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, M., William, R., Yannis, C.Y.: The flow and displacement in porous media of fluids with yield stress. Chem. Eng. Sci. 60, 4183–4202 (2005)

    Article  Google Scholar 

  32. Wang, S.J., Huang, Y.Z., Civan, F.: Experimental and theoretical investigation of the Zaoyuan field heavy oil flow through porous media. J. Pet. Sci. Eng. 50, 83–101 (2006)

    Article  Google Scholar 

  33. Song, F.Q., Jiang, R.J., Bian, S.L.: Measurement of threshold pressure gradient of microchannels by static Method. Chin. Phys. Lett. 24, 1995–1998 (2007)

    Article  Google Scholar 

  34. Hao, F., Cheng, L.S., Hassan, O., et al.: Threshold pressure gradient in ultra-low permeability reservoirs. Pet. Sci. Technol. 26, 1024–1035 (2008)

    Article  Google Scholar 

  35. Yun, M.J., Yu, B.M., Cai, J.C.: A fractal model for the starting pressure gradient for Bingham fluids in porous media. Int. J. Heat Mass Transf. 51, 1402–1408 (2008)

    Article  MATH  Google Scholar 

  36. Wang, F., Yue, X.A., Xu, S.L., et al.: Influence of wettability on flow characteristics of water through microtubes and cores. Chin. Sci. Bull. 54, 2256–2262 (2009)

    Article  Google Scholar 

  37. Xiong, W., Lei, Q., Gao, S.S., et al.: Pseudo threshold pressure gradient to flow for low permeability reservoirs. Pet. Explor. Dev. 36, 232–236 (2009)

    Article  Google Scholar 

  38. Cai, J.C., Yu, B.M., Zou, M.Q., et al.: Fractal analysis of invasion depth of extraneous fluids in porous Media. Chem. Eng. Sci. 65, 5178–5186 (2010)

    Article  Google Scholar 

  39. Cai, J.C., Hu, X.Y., Standnes, D.C., et al.: An analytical model for spontaneous imbibition in fractal porous media including gravity. Coll. Surf. A 414, 228–323 (2012)

    Article  Google Scholar 

  40. Darcy, H.: Les Fontaines Publiques de La Ville de Dijon [The Public Fountains of the Town of Dijon]. Dalmont, Paris (1856) (in French)

  41. Cai, J.C.: A fractal approach to low velocity non-Darcy flow in a low permeability porous medium. Chin. Phys. B 23, 044701 (2014)

    Article  Google Scholar 

  42. Pascal, H.: Nonsteady flow through porous media in the presence of a threshold pressure gradient. Acta Mech. 39, 207–224 (1981)

    Article  MATH  Google Scholar 

  43. Wu, Y.S., Pruess, K., Witherspoon, P.A.: Flow and displacement of Bingham non-Newtonian fluids in porous Media. SPE Reserv. Eng. 7, 369–376 (1992)

    Article  Google Scholar 

  44. Song, F.Q., Liu, C.Q., Li, F.H.: Transient pressure of percolation through one dimension porous media with threshold pressure gradient. Appl. Math. Mech. 20, 27–35 (1999)

    Article  MATH  Google Scholar 

  45. Zhu, Y., Xie, J.Z., Yang, W.H., et al.: Method for improving history matching precision of reservoir numerical simulation. Pet. Explor. Dev. 35, 225–229 (2008)

    Article  Google Scholar 

  46. Feng, G.Q., Liu, Q.G., Shi, G.Z., et al.: An unsteady seepage flow model considering kickoff pressure gradient for low-permeability gas reservoirs. Pet. Explor. Dev. 35, 457–461 (2008)

    Article  Google Scholar 

  47. Marshall, S.L.: Nonlinear pressure diffusion in flow of compressible liquids through porous media. Transp. Porous Media 77, 431–446 (2009)

    Article  MathSciNet  Google Scholar 

  48. Bai, M., Ma, Q.G., Roegiers, J.C.: A nonlinear dual-porosity model. Appl. Math. Modell. 18, 602–610 (1994)

    Article  MATH  Google Scholar 

  49. Cao, X.L., Tong, D.K., Wang, R.H.: Exact solutions for nonlinear transient flow model including a quadratic gradient term. Appl. Math. Mech. 25, 102–109 (2004)

    Article  MATH  Google Scholar 

  50. Tong, D.K., Zhang, H.Q., Wang, R.H.: Exact solution and its behavior characteristic of nonlinear dual-porosity model. Appl. Math. Mech. 26, 1277–1283 (2005)

    Article  MATH  Google Scholar 

  51. Chakrabarty, C., Farouq, A.S.M., Tortike, W.S.: Effects of the nonlinear gradient term on the transient pressure solution for a radial flow system. J. Pet. Sci. Eng. 8, 241–256 (1993)

    Article  Google Scholar 

  52. Odeh, A.S., Babu, D.K.: Comparison of solutions of the nonlinear and linearized diffusion equations. SPE Reserv. Eng. 3, 1202–1206 (1988)

    Article  Google Scholar 

  53. Finjord, J., Aadnoy, B.S., Rogaland, R.C.: Effects of the quadratic gradient term in steady-state and semisteady-state solutions for reservoir pressure. SPE Form. Eval. 4, 413–417 (1989)

    Article  Google Scholar 

  54. Wang, Y., Dusseault, M.B.: The effect of quadratic gradient terms on the borehole solution in poroelastic Media. Water Resour. Res. 27, 3215–3223 (1991)

    Article  Google Scholar 

  55. Chakrabarty, C., Farouq, A.S.M., Tortike, W.S.: Analytical solutions for radial pressure distribution including the effects of the quadratic-gradient term. Water Resour. Res. 29, 1171–1177 (1993)

  56. Braeuning, S., Jelmert, T.A., Vik, S.A.: The effect of the quadratic gradient term on variable-rate well-tests. J. Pet. Sci. Eng. 21, 203–222 (1998)

    Article  Google Scholar 

  57. Li, W., Li, X.P., Li, S.C., et al.: The similar structure of solutions in fractal multilayer reservoir including a quadratic gradient term. J. Hydrodyn. 24, 332–338 (2012)

  58. Dewei, M., Ailin, J., Chengye, J., et al.: Research on transient flow regulation with the effect of quadratic pressure gradient. Pet. Sci. Technol. 31, 408–417 (2013)

    Article  Google Scholar 

  59. Nie, R.S., Ge, F., Liu, Y.L.: The researches on the nonlinear flow model with quadratic pressure gradient and its application for double porosity reservoir. In: Flow in porous media: from phenomena to engineering and beyond: 2009 International Forum on Porous Flow and Applications. Wuhan (2009)

  60. Yao, Y.D., Wu, Y.S., Zhang, R.L.: The transient flow analysis of fluid in a fractal, double-porosity reservoir. Transp. Porous Media 94, 175–187 (2012)

    Article  MathSciNet  Google Scholar 

  61. Nie, R.S., Jia, Y.L., Yu, J., et al.: The transient well test analysis of fractured-vuggy triple-porosity reservoir with the quadratic pressure gradient term. In: Latin American and Caribbean Petroleum Engineering Conference. Cartagena de Indias (2009)

  62. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  63. Gupta, R.S., Kumar, A.: Treatment of multi-dimensional moving boundary problems by coordinate transformation. Int. J. Heat Mass Transf. 28, 1355–1366 (1985)

    Article  MATH  Google Scholar 

  64. Méndez-Bermúdez, A., Luna-Acosta, G.A., Izrailev, F.M., et al.: Solution of the eigenvalue problem for two-dimensional modulated billiards using a coordinate transformation. Commun. Nonlinear Sci. Numer. Simul. 10, 787–795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, West Lafayette (2010)

    Google Scholar 

  66. Poularikas, A.D.: The Handbook of Formulas and Table for Signal ‘Processing, the Electrical Engineering Handbook Series. CRC Press LLC and IEEE Press, New York (1999)

    Google Scholar 

  67. McCollum, P.A., Brown, B.F.: Laplace Transform Tables and Theorems. Holt Rinehart and Winston, New York (1965)

    Google Scholar 

  68. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding by the project (Grant 51404232) sponsored by the National Natural Science Foundation of China, the National Science and Technology Major Project (Grant 2011ZX05038003), and the China Postdoctoral Science Foundation project (Grant 2014M561074). In particular, Wenchao Liu would also like to express his deepest gratitude to the China Scholarship Council for its generous financial support of the research. Special thanks go to Dr. Yongfei Yang, Dr. Lili Xue, and Dr. Lei Zhang for their tremendous help in improving the writing and wording of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Liu.

Appendix 1

Appendix 1

Equation (1) can be rewritten as follows

$$\begin{aligned} p=\frac{1}{C_\mathrm{f} }\ln \rho -\frac{1}{C_\mathrm{f} }\ln \rho _0 +p_0. \end{aligned}$$
(56)

Differentiating the two sides of Eq. (56) with respect to x, we have

$$\begin{aligned} \frac{\partial p}{\partial x}=\frac{1}{C_\mathrm{f} \cdot \rho }\frac{\partial \rho }{\partial x}, \end{aligned}$$
(57)

Equation (57) can be rewritten as follows

$$\begin{aligned} \frac{\partial \rho }{\partial x}=C_\mathrm{f} \cdot \rho \frac{\partial p}{\partial x}, \end{aligned}$$
(58)

In the same manner as previously, from Eqs. (1) and (2) the following equations can also be deduced:

$$\begin{aligned} \frac{\partial \rho }{\partial t}= & {} C_\mathrm{f} \cdot \rho \frac{\partial p}{\partial t}, \end{aligned}$$
(59)
$$\begin{aligned} \frac{\partial \phi }{\partial t}= & {} C_\phi \cdot \phi \frac{\partial p}{\partial t}. \end{aligned}$$
(60)

The left-hand side of Eq. (4) can be expanded as follows

$$\begin{aligned} -\frac{\partial }{\partial x}\left( {\rho \cdot \upsilon } \right)= & {} \frac{k}{\mu }\cdot \rho \cdot \frac{\partial ^{2}p}{\partial x^{2}}+\frac{k}{\mu }\cdot \frac{\partial \rho }{\partial x}\cdot \frac{\partial p}{\partial x} \nonumber \\&-\frac{k\cdot \lambda \cdot C_\mathrm{f} }{\mu }\cdot \rho \cdot \frac{\partial p}{\partial x}, \end{aligned}$$
(61)

Substituting Eq. (58) into the right-hand side of Eq. (61) yields

$$\begin{aligned} -\frac{\partial }{\partial x}\left( {\rho \cdot \upsilon } \right)= & {} \underbrace{\frac{k}{\mu }\cdot \rho \cdot \frac{\partial ^{2}p}{\partial x^{2}}}_\mathrm{{Main\,Term}}+\underbrace{\frac{k\cdot C_\mathrm{f} }{\mu }\cdot \rho \cdot \left( {\frac{\partial p}{\partial x}} \right) ^{2}}_\mathrm{{Quadratic\,Gradient\,Term}} \nonumber \\&-\underbrace{\frac{k\cdot \lambda \cdot C_\mathrm{f} }{\mu }\cdot \rho \cdot \frac{\partial p}{\partial x}}_\mathrm{{Small\,Term}}, \end{aligned}$$
(62)

Because \(\lambda <<1\), and \(C_{\mathrm{f}} <<1\), the small term on the right-hand side of Eq. (62) can be neglected, and then Eq. (62) can be rewritten as follows

$$\begin{aligned} -\frac{\partial }{\partial x}\left( {\rho \cdot \upsilon } \right) =\underbrace{\frac{k}{\mu }\cdot \rho \cdot \frac{\partial ^{2}p}{\partial x^{2}}}_\mathrm{{Main\,Term}}+\underbrace{\frac{k\cdot C_\mathrm{f} }{\mu }\cdot \rho \cdot \left( {\frac{\partial p}{\partial x}} \right) ^{2}}_\mathrm{{Quadratic\,Gradient\,Term}}, \end{aligned}$$
(63)

In Eq. (63), the quadratic pressure gradient term is retained for the deduction of the governing equation.

Expanding the right-hand side of Eq. (4) yields

$$\begin{aligned} \frac{\partial \left( {\rho \phi } \right) }{\partial t}=\rho \frac{\partial \phi }{\partial t}+\phi \frac{\partial \rho }{\partial t}, \end{aligned}$$
(64)

Substituting Eqs. (59) and (60) into the right-hand side of Eq. (64) yields

$$\begin{aligned} \frac{\partial \left( {\rho \phi } \right) }{\partial t}= & {} \rho \cdot C_\phi \cdot \phi \cdot \frac{\partial p}{\partial t}+\phi \cdot C_\mathrm{f} \cdot \rho \cdot \frac{\partial p}{\partial t} \nonumber \\= & {} \rho \cdot \phi \cdot \frac{\partial p}{\partial t}\cdot \left( {C_\phi +C_\mathrm{f} } \right) =\rho \cdot \phi \cdot \frac{\partial p}{\partial t}\cdot C_\mathrm{t}. \end{aligned}$$
(65)

Substituting Eqs. (63) and (65) into Eq. (4), the governing equation in consideration of the quadratic pressure gradient term can be obtained as follows

$$\begin{aligned} \underbrace{\frac{k}{\mu }\cdot \rho \cdot \frac{\partial ^{2}p}{\partial x^{2}}}_\mathrm{{Main\,Term}}+\underbrace{\frac{k\cdot C_\mathrm{f} }{\mu }\cdot \rho \cdot \left( {\frac{\partial p}{\partial x}} \right) ^{2}}_\mathrm{{Quadratic\,Gradient\,Term}}=\rho \cdot \phi \cdot \frac{\partial p}{\partial t}\cdot C_\mathrm{t}.\nonumber \\ \end{aligned}$$
(66)

Equation (66) can be equivalently simplified, by canceling the variable \(\rho \) on both sides, as follows

$$\begin{aligned} \frac{k}{\mu }\cdot \frac{\partial ^{2}p}{\partial x^{2}}+\frac{k\cdot C_\mathrm{f} }{\mu }\cdot \left( {\frac{\partial p}{\partial x}} \right) ^{2}=\phi \cdot \frac{\partial p}{\partial t}\cdot C_\mathrm{t}. \end{aligned}$$
(67)

1.1 Appendix 2

The dimensionless mathematical model, considering the quadratic threshold pressure gradient, for the one-dimensional Darcy’s flow in semi-infinite long porous media for the case of a constant flow rate at the inner boundary is as follows

$$\begin{aligned}&\frac{\partial ^{2}P_\mathrm{D} }{\partial x_\mathrm{D} ^{2}}-\alpha _\mathrm{D} \left( {\frac{\partial P_\mathrm{D} }{\partial x_\mathrm{D} }} \right) ^{2}=\frac{\partial P_\mathrm{D} }{\partial t_\mathrm{D} }, \end{aligned}$$
(68)
$$\begin{aligned}&\left. {P_\mathrm{D} } \right| _{t_\mathrm{D} =0} =0, \end{aligned}$$
(69)
$$\begin{aligned}&\left. {\frac{\partial P_\mathrm{D} }{\partial x_\mathrm{D} }} \right| _{x_\mathrm{D} =0} = -1, \end{aligned}$$
(70)
$$\begin{aligned}&\left. {P_\mathrm{D} } \right| _{x_\mathrm{D} \rightarrow \infty } = 0. \end{aligned}$$
(71)

First, introduce the following transform [52]:

$$\begin{aligned} P_\mathrm{D} =-\frac{1}{\alpha _\mathrm{D} }\cdot \ln U. \end{aligned}$$
(72)

Substituting Eq. (72) into Eqs. (68)–(71) yields

$$\begin{aligned}&\frac{\partial ^{2}U}{\partial x_\mathrm{D} ^{2}}=\frac{\partial U}{\partial t_\mathrm{D} } , \end{aligned}$$
(73)
$$\begin{aligned}&\left. U \right| _{t_\mathrm{D} =0} = 1, \end{aligned}$$
(74)
$$\begin{aligned}&\left. {\frac{\partial U}{\partial x_\mathrm{D} }} \right| _{x_\mathrm{D} =0} = \alpha _\mathrm{D} \cdot \left. U \right| _{x_\mathrm{D} =0} ,\end{aligned}$$
(75)
$$\begin{aligned}&\left. U \right| _{x_\mathrm{D} \rightarrow \infty } = 1. \end{aligned}$$
(76)

By the linear Laplace transform,

$$\begin{aligned} \ell [U]=\int \limits _0^\infty {U\cdot \exp \left( {-s\cdot t_\mathrm{D} } \right) \text {d}t_\mathrm{D}}. \end{aligned}$$
(77)

Equations (73)–(76) can be transformed as

$$\begin{aligned}&\frac{\partial ^{2}\ell [U]}{\partial x_\mathrm{D}^{2}}=s\ell [U]-1, \end{aligned}$$
(78)
$$\begin{aligned}&\left. {\frac{\partial \ell [U]}{\partial x_\mathrm{D} }} \right| _{x_\mathrm{D} =0} = \alpha _\mathrm{D} \cdot \ell [\left. {U]} \right| _{x_\mathrm{D} =0}, \end{aligned}$$
(79)
$$\begin{aligned}&\left. {\ell [U]} \right| _{x_\mathrm{D} \rightarrow \infty } =\frac{1}{s}. \end{aligned}$$
(80)

The analytical solution for Eqs. (78)–(80) can be solved as follows [52]

$$\begin{aligned} \ell [U]=-\frac{\alpha _\mathrm{D} \cdot \exp \left( {-x_\mathrm{D} \sqrt{s}} \right) }{\left( {\alpha _\mathrm{D} +\sqrt{s}} \right) s}+\frac{1}{s}. \end{aligned}$$
(81)

The following Laplace and inverse Laplace transforms are known [6668] as

$$\begin{aligned}&\ell ^{-1}\left[ \frac{1}{s}\right] = 1 , \end{aligned}$$
(82)
$$\begin{aligned}&\ell ^{-1}\left[ \frac{\alpha _\mathrm{D} \cdot \exp \left( {-x_\mathrm{D} \sqrt{s}} \right) }{\left( {\alpha _\mathrm{D} +\sqrt{s}} \right) s}\right] \nonumber \\&\quad = -\exp \left( {\alpha _\mathrm{D} \cdot x_\mathrm{D} +\alpha _\mathrm{D} ^{2}\cdot t_\mathrm{D} } \right) \hbox {erfc}\left( {\alpha _\mathrm{D} \sqrt{t_\mathrm{D} }+\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) \nonumber \\&\qquad +\,\hbox {erfc}\left( {\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) . \end{aligned}$$
(83)

Therefore, from Eq. (81), we obtain

$$\begin{aligned} U= & {} \exp \left( {\alpha _\mathrm{D} \cdot x_\mathrm{D} +\alpha _\mathrm{D} ^{2}\cdot t_\mathrm{D} } \right) \hbox {erfc}\left( {\alpha _\mathrm{D} \sqrt{t_\mathrm{D} }+\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) \nonumber \\&+\,\hbox {erfc}\left( {\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) +1. \end{aligned}$$
(84)

Then, substituting Eq. (84) into Eq. (72), we obtain the exact analytical solution of \(P_{\mathrm{D}}\) as follows

$$\begin{aligned} P_\mathrm{D}= & {} -\frac{1}{\alpha _\mathrm{D} }\cdot \ln \Bigg [ \exp \left( {\alpha _\mathrm{D} \cdot x_\mathrm{D} +\alpha _\mathrm{D} ^{2}\cdot t_\mathrm{D} } \right) \nonumber \\&\times \,\hbox {erfc}\left( {\alpha _\mathrm{D} \sqrt{t_\mathrm{D} }+\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) +\hbox {erfc}\left( {\frac{x_\mathrm{D} }{2\sqrt{t_\mathrm{D} }}} \right) +1 \Bigg ].\nonumber \\ \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yao, J., Chen, Z. et al. Effect of quadratic pressure gradient term on a one-dimensional moving boundary problem based on modified Darcy’s law. Acta Mech. Sin. 32, 38–53 (2016). https://doi.org/10.1007/s10409-015-0526-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0526-2

Keywords

Navigation