Skip to main content
Log in

A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)

    Article  Google Scholar 

  2. Lu, T., Zhang, Q.: Novel strengthening methods for ultralightweight sandwich structures with periodic lattice cores. Sci. China Technol. Sci. 53, 875–877 (2010)

    Article  Google Scholar 

  3. Gu, S., Lu, T.J., Evans, A.G.: On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int. J. Heat Mass Transf. 44, 2163–2175 (2001)

    Article  MATH  Google Scholar 

  4. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Lu, T., Zhang, Q., Jin, F.: Recent progress in the development of lightweight porous materials and structures. Mater. China 31, 13–25 (2012)

    Google Scholar 

  6. Fang, D.-N., Li, Y.-L., Zhao, H.: On the behaviour characterization of metallic cellular materials under impact loading. Acta Mech. Sin. 26, 837–846 (2010)

    Article  MATH  Google Scholar 

  7. Xu, Y.L., Chen, C.Q., Tian, X.G.: Wave characteristics of two-dimensional hierarchical hexagonal lattice structures. J. Vib. Acoust. Trans. ASME 136, 011011 (2014)

    Article  Google Scholar 

  8. Hohe, J., Becker, W.: Effective stress-strain relations for two-dimensional cellular sandwich cores: homogenization, material models, and properties. Appl. Mech. Rev. 55, 61–87 (2002)

    Article  Google Scholar 

  9. Wang, A.J., McDowell, D.L.: In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Technol. Trans. ASME 126, 137–156 (2004)

    Article  Google Scholar 

  10. Cai, Y., Xu, L., Cheng, G.: Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int. J. Solids Struct. 51, 284–292 (2014)

    Article  Google Scholar 

  11. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benssousan, A., Lions, J.L., Papanicoulau, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amesterdam (1978)

    Google Scholar 

  13. Yan, J., Cheng, G., Liu, S., et al.: Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. Int. J. Mech. Sci. 48, 400–413 (2006)

    Article  MATH  Google Scholar 

  14. Andrews, E.W., Gibson, L.J., Ashby, M.F.: The creep of cellular solids. Acta Mater. 47, 2853–2863 (1999)

    Article  Google Scholar 

  15. Andrews, E.W., Gioux, G., Onck, P., et al.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701–713 (2001)

    Article  MATH  Google Scholar 

  16. Diebels, S., Steeb, H.: The size effect in foams and its theoretical and numerical investigation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 2869–2883 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Onck, P.R., Andrews, E.W., Gibson, L.J.: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681–699 (2001)

    Article  MATH  Google Scholar 

  18. Tekoglu, C., Onck, P.R.: Size effects in the mechanical behavior of cellular materials. J. Mater. Sci. 40, 5911–5917 (2005)

    Article  Google Scholar 

  19. Liu, S.T., Su, W.Z.: Effective couple-stress continuum model of cellular solids and size effects analysis. Int. J. Solids Struct. 46, 2787–2799 (2009)

    Article  MATH  Google Scholar 

  20. Chen, C., Lu, T.J., Fleck, N.A.: Effect of inclusions and holes on the stiffness and strength of honeycombs. Int. J. Mech. Sci. 43, 487–504 (2001)

    Article  MATH  Google Scholar 

  21. Yan, J., Cheng, G., Liu, L., et al.: Stress optimization for truss-like materials based on micropolar continuum representation. Acta Mech. Sin. 38, 356–363 (2006)

    Google Scholar 

  22. Zhang, W., Sun, S.: Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Methods Eng. 68, 993–1011 (2006)

    Article  MATH  Google Scholar 

  23. Yan, J., Cheng, G., Liu, L., et al.: Concurrent material and structural optimization of hollow plate with truss-like material. Struct. Multidiscip. Optim. 35, 153–163 (2008)

    Article  Google Scholar 

  24. Tekoglu, C., Onck, P.R.: Size effects in two-dimensional voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)

    Article  MATH  Google Scholar 

  25. Eringen, A.C.: Theory of Micropolar Elasticity. Academic, New York (1968)

    MATH  Google Scholar 

  26. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  27. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31, 1063–1084 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jasiuk, I., Ostoja-Starzewski, M.: Planar cosserat elasticity of materials with holes and intrusions. Appl. Mech. Rev. 48, 11–18 (1995)

    Article  MATH  Google Scholar 

  29. Muhlhaus, H.B. (ed.): Continuum Models for Materials with Microstructure. Wiley, New York (1995)

    MATH  Google Scholar 

  30. Dendievel, R., Forest, S., Canova, G.: An estimation of overall properties of heterogeneous cosserat materials. J. Phys. IV 8, 111–118 (1998)

    Google Scholar 

  31. Forest, S., Sab, K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, X., Tomita, Y.: A homogenization method for analysis of heterogeneous cosserat materials. Adv. Eng. Plast. 177, 53–58 (2000)

    Google Scholar 

  33. Bouyge, F., Jasiuk, I., Ostoja-Starzewski, M.: A micromechanically based couple-stress model of an elastic two-phase composite. Int. J. Solids Struct. 38, 1721–1735 (2001)

    Article  MATH  Google Scholar 

  34. Hu, G., Liu, X., Xun, F.: Micromechanics of heterogeneous micropolar mediums. Adv. Mech. 34, 195–214 (2004)

    Google Scholar 

  35. Bigoni, D., Drugan, W.J.: Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. Trans. ASME 74, 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  36. Yuan, X., Tomita, Y., Andou, T.: A micromechanical approach of nonlocal modeling for media with periodic microstructures. Mech. Res. Commun. 35, 126–133 (2008)

    Article  MATH  Google Scholar 

  37. Chen, Y., Liu, X.N., Hu, G.K., et al.: Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 1–17 (2014)

    Article  Google Scholar 

  38. Liu, X.N., Huang, G.L., Hu, G.K.: Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907–1921 (2012)

  39. Berglund, K.: Structural models of micropolar media. In: Brulin O., Hsieh r. K. T. (eds.) Mechanics of micropolar media. CISM Lecture Notes, World Scientific, Singapore (1982)

  40. Askar, A., Cakmak, A.S.: A structural model of a micropolar continuum. Int. J. Eng. Sci. 6, 583–589 (1968)

    Article  MATH  Google Scholar 

  41. Bazant, Z.P., Christensen, M.: Analogy between micropolar continuum and grid frameworks under initial stress. Int. J. Solids Struct. 8, 327–346 (1972)

    Article  MATH  Google Scholar 

  42. Chen, J.Y., Huang, Y., Ortiz, M.: Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789–828 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kumar, R.S., McDowell, D.L.: Generalized continuum modeling of 2-D periodic cellular solids. Int. J. Solids Struct. 41, 7399–7422 (2004)

    Article  MATH  Google Scholar 

  44. Diebels, S., Ebinger, T., Steeb, H.: An anisotropic damage model of foams on the basis of a micromechanical description. J. Mater. Sci. 40, 5919–5924 (2005)

    Article  Google Scholar 

  45. Ebinger, T., Steeb, H., Diebels, S.: Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Comput. Mater. Sci. 32, 337–347 (2005)

    Article  MATH  Google Scholar 

  46. Warren, W.E., Byskov, E.: Three-fold symmetry restrictions on two-dimensional micropolar materials. Eur. J. Mech. A Solids 21, 779–792 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, X.L., Stronge, W.J.: Micropolar theory for two-dimensional stresses in elastic honeycomb. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455, 2091–2116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, A.-J., Kumar, R.S., McDowell, D.L.: Mechanical behavior of extruded prismatic cellular metals. J. Mech. Adv. Mater. Struct. 12, 185–200 (2005)

    Article  Google Scholar 

  49. Chen, Y., Liu, X., Hu, G.: Micropolar modeling of planar orthotropic rectangular chiral lattices. Comptes Rendus Mec. 342, 273–283 (2014)

    Article  Google Scholar 

  50. Mora, R.J., Waas, A.M.: Evaluation of the micropolar elasticity constants for honeycombs. Acta Mech. 192, 1–16 (2007)

    Article  MATH  Google Scholar 

  51. Diebels, S., Steeb, H.: Stress and couple stress in foams. Comput. Mater. Sci. 28, 714–722 (2003)

    Article  Google Scholar 

  52. Gan, Y., Chen, C., Shen, Y., et al.: Micro-mechanics modeling of the micropolar constitutive behavior of two-dimensional cellular metals. In: Proceeding of national conference of solid mechanics, Dalian, China (2002)

  53. Ehlers, W., Ramm, E., Diebels, S., et al.: From particle ensembles to cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Niu, B., Yan, J., Cheng, G.: Micropolar continuum modeling of 2-d periodic cellular materials and a fast mapping algorithm for the microstress. Chin. J. Solid Mech. 29, 109–120 (2008)

    Google Scholar 

  55. Niu, B.: Multi-scale dynamic design optimization based on integrated design of structure and material. Ph.D. thesis, Dalian University of Technology (2010)

  56. Adachi, T., Tomita, Y., Tanaka, M.: Computational simulation of deformation behavior of 2d-lattice continuum. Int. J. Mech. Sci. 40, 857–866 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The project was supported by 973 Project of China (Grant 2014CB046503), the National Natural Science Foundation of China (Grants 11372060, 51505064, 91216201), 111 project (Grant B14013), Fundamental Research Funds for the Central Universities (Grant DUT14LK30), and Start Funds of DUT (Grant DUT13RC(3)96). This support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Appendix

Appendix

Details about the equilibrium conditions of a joint.

Let us consider the equilibrium conditions of joint D in the first oriented cell in Fig. 3. The displacements and rotations at joints E, F, and D in the unit cell are expressed by Taylor approximations of corresponding kinematic variables at the joint A. When the explicit enforcement of equilibrium is not used, the forces and moments on midpoints , , and shown in Fig. 3a can be obtained as below.

At midpoint :

(35)
(36)
(37)

The forces and moments at midpoints and can be evaluated similarly.

According to Eq. (9), the displacement and rotations at joints D, E, and F can be expressed through a Taylor approximation of corresponding kinematic variables at the joint A, e.g., at joint F:

$$\begin{aligned} {\varvec{u}}^{\mathrm{F}}\approx & {} {\varvec{u}}+L_{\mathrm{AF}} \frac{\partial {\varvec{u}}}{\partial t_{\mathrm{AF}} }+\frac{L_{\mathrm{AF}}^2 }{2}\frac{\partial ^{2}{\varvec{u}}}{\partial t_{\mathrm{AF}}^2 },\nonumber \\ \varphi ^{\mathrm{F}}\approx & {} \varphi +L_{\mathrm{AF}} \frac{\partial \varphi }{\partial t_{\mathrm{AF}} }+\frac{L_{\mathrm{AF}}^2 }{2}\frac{\partial ^{2}\varphi }{\partial t_{\mathrm{AF}}^2 }. \end{aligned}$$
(38)

\(L_\mathrm{AF} =\sqrt{3}L\) and

$$\begin{aligned} \frac{\partial }{\partial t_{\mathrm{AF}} }= & {} \frac{\sqrt{3}}{2}\frac{\partial }{\partial x_1 }-\frac{1}{2}\frac{\partial }{\partial x_2 },\nonumber \\ \frac{\partial }{\partial t_{\mathrm{AF}}^2 }= & {} \frac{3}{4}\frac{\partial }{\partial x_1^2 }+\frac{1}{4}\frac{\partial }{\partial x_2^2 }-\frac{\sqrt{3}}{2}\frac{\partial ^{2}}{\partial x_2 \partial x_1 }. \end{aligned}$$
(39)

The expansions for displacement and micro-rotations at joints D and E can be obtained similarly. By substituting the kinematic variables from these Taylor approximations into the expressions of forces and moments at midpoints , , and , we can obtain the expressions of these forces and moments in terms of the displacement uv and micro-rotations \(\varphi \) of joint A and their derivatives.

Then let us consider the equilibrium conditions at joint D, the resulting forces and moment are

(40)
(41)
(42)

Inserting Eqs. (35)–(37) at midpoint and the expressions of forces and moments at midpoints and into Eq. (40)–(42) after using Taylor approximations of displacements and rotations of joint A, we obtain the resulting forces and moment

(43)
(44)
(45)

Equilibrium of forces and moments at joint D is satisfied only if \(f_1,\, f_2 \), and m equal zero. Unfortunately, it is not the case here.

By substituting these forces and moments acting on the boundary of the unit cell without explicit equilibrium enforcement into Eqs. (10) and (11), we can obtain the constitutive constants (46)–(51), which are the same as in Chen et al. [42] except for the constants for the couple stress. However, they are too stiff. Thus, this point also proves that it is very necessary in equivalent analysis of cellular structures to enforce the explicit equilibrium of forces and moments besides maintaining compatibility of displacements. Our new united approach actually realizes this requirement and obtains the micropolar constitutive relationship described in Eq. (25)–(30).

$$\begin{aligned} \sigma _{11}= & {} \varepsilon _{11} \left( {\frac{\sqrt{3}E^{{\prime }}}{4}+\frac{\sqrt{3}k}{L^{2}}} \right) +\varepsilon _{22} \left( {\frac{\sqrt{3}E^{{\prime }}}{12}-\frac{\sqrt{3}k}{L^{2}}} \right) , \nonumber \\\end{aligned}$$
(46)
$$\begin{aligned} \sigma _{22}= & {} \varepsilon _{11} \left( {\frac{\sqrt{3}E^{{\prime }}}{12}-\frac{\sqrt{3}k}{L^{2}}} \right) +\varepsilon _{22} \left( {\frac{\sqrt{3}E^{{\prime }}}{4}+\frac{\sqrt{3}k}{L^{2}}} \right) , \nonumber \\\end{aligned}$$
(47)
$$\begin{aligned} \sigma _{12}= & {} \frac{\left[ {\left( {36k+E^{{\prime }}L^{2}} \right) \varepsilon _{12} +\left( {-12k+E^{{\prime }}L^{2}} \right) \varepsilon _{21} } \right] }{4\sqrt{3}L^{2}}, \nonumber \\\end{aligned}$$
(48)
$$\begin{aligned} \sigma _{21}= & {} \frac{\left[ {\left( {-12k+E^{{\prime }}L^{2}} \right) \varepsilon _{12} +\left( {36k+E^{{\prime }}L^{2}} \right) \varepsilon _{21} } \right] }{4\sqrt{3}L^{2}}, \nonumber \\\end{aligned}$$
(49)
$$\begin{aligned} m_{13}= & {} \frac{k}{\sqrt{3}}\chi _{13}, \nonumber \\\end{aligned}$$
(50)
$$\begin{aligned} m_{23}= & {} \frac{k}{\sqrt{3}}\chi _{23}. \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Yan, J. A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material. Acta Mech. Sin. 32, 456–468 (2016). https://doi.org/10.1007/s10409-015-0492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0492-8

Keywords

Navigation