Skip to main content
Log in

Fracture analyses of different pre-holed concrete specimens under compression

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Crack propagation processes in specially prepared concrete discs and rectangular specimens containing a single cylindrical hole or multiple holes of varying diameters have been studied both experimentally and numerically. In this research, the cracks coalescence paths in Brazilian disc and rectangular specimens made from rock-like material containing multi-holes are investigated. These concrete specimens are specially prepared from an appropriate mixture of Portland Pozzolana Cement (PPC), fine sands, and water. The pre-holed Brazilian discs and rectangular specimens are experimentally tested under compression. The breakage load in the ring type disc specimens containing an axial hole with varying diameters is measured and the distribution of the induced lateral stress is obtained. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc and rectangular specimens, the cracks propagation and cracks coalescence are also investigated. These experiments are numerically modeled by a modified higher order displacement discontinuity method. It has been shown that the corresponding experimental and numerical results are in good agreement with each other. The results presented in this research validate the accuracy and applicability of these crack analyses procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kato, T., Nishioka, T.: Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. Int. J. Fract. 131, 247–266 (2005)

    Article  MATH  Google Scholar 

  2. Hudson, J.A., Brown, E.T., Rummel, F.: Controlled failure of rock diss and rings loaded in diametral compression. Int. J. Rock Mech. Min. Sci. 9, 241–248 (1972)

    Article  Google Scholar 

  3. Hudson, J.A.: Tensil strength and the Ring test. Int. J. Rock Mech. Min. Sci. 6, 91–97 (1969)

    Article  Google Scholar 

  4. Sammis, C.G., Ashby, M.F.: The failure of brittle porous solids under compressive stress states. Acta. Metall. 34, 511–526 (1986)

    Article  Google Scholar 

  5. Wong, R.H.C., Chau, K.T.: Crack coalescence in a rock-like material containing two cracks. Int. J. Rock Mech. Min. Sci. 35, 147–164 (1998)

    Article  Google Scholar 

  6. Wong, R.H.C., Chau, K.T., Tang, C.A., et al.: Analysis of crack coalescence in rock-like materials containing three flaws—Part I: experimental approach. Int. J. Rock Mech. Min. Sci. 38, 909–924 (2001)

    Article  Google Scholar 

  7. Wong, R.H.C., Tang, C.A., Chau, K.T., et al.: Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression. Eng. Fract. Mech. 69, 1853–1871 (2002)

    Article  Google Scholar 

  8. Park, C.H.: Coalescence of Frictional Fractures in Rock Materials. PhD Thesis, Purdue University West Lafayette, Indiana (2008)

  9. Yang, Q., Dai, Y.H., Han, L.J., et al.: Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng. Fract. Mech. 76, 1833–1845S (2009)

    Article  Google Scholar 

  10. Park, C.H., Bobet, A.: Crack coalescence in specimens with open and closed flaws: a comparison. Int. J. Rock Mech. Min. Sci. 46, 819–829C (2009)

    Article  Google Scholar 

  11. Park, C.H., Bobet, A.: Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng. Fract. Mech. 77, 2727–2748 (2010)

    Article  Google Scholar 

  12. Tang, C.A., Hudson, J.A.: Rock failure mechanisms: illustrated and explained. CRC Press, Boca Raton (2010)

    Google Scholar 

  13. Yang, S.Q.: Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng. Fract. Mech. 78, 3059–3081 (2011)

    Article  Google Scholar 

  14. Mellor, M., Hawkes, I.: Mesurment of tensile strength by diametral compression od disc and annuli. Eng. Geol. 5, 173–225 (1971)

    Article  Google Scholar 

  15. Ayatollahi, M.R., Aliha, M.R.M.: On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng. Fract. Mech. 75, 4631–4641 (2008)

    Article  Google Scholar 

  16. Wang, Q.Z.: Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens. Int. J. Rock Mech. Min. Sci. 47, 1006–1011 (2010)

    Article  Google Scholar 

  17. Dai, F., Chen, R., Iqbal, M.J., et al.: Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int. J. Rock Mech. Min. Sci. 47, 606–613 (2010)

    Article  Google Scholar 

  18. Dai, F., Xia, K., Zheng, H., et al.: Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng. Fract. Mech. 78, 2633–2644 (2011)

    Article  Google Scholar 

  19. Ayatollahi, M.R., Sistaninia, M.: Mode II fracture study of rocks using Brazilian disk specimens. Int. J. Rock Mech. Min. Sci. 48, 819–826 (2011)

    Article  Google Scholar 

  20. Wang, Q.Z., Feng, F., Ni, M., et al.: Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng. Fract. Mech. 78, 2455–2469 (2011)

    Article  Google Scholar 

  21. Wang, Q.Z., Gou, X.P., Fan, H.: The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption. Eng. Fract. Mech. 82, 1–8 (2012)

    Article  Google Scholar 

  22. Awaji, H., Sato, S.: Combined mode fracture toughness measurement by the disk test. J. Eng. Mater. Technol. 100, 175–182 (1978)

    Article  Google Scholar 

  23. Sanchez, J.: Application of the disk test to mode-I-II fracture toughness analysis. [Master Thesis]. Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh (1979)

  24. Atkinson, C., Smelser, R.E., Sanchez, J.: Combined mode fracture via the cracked Brazilian disk. Int. J. Fract. 18, 279–291 (1982)

    Google Scholar 

  25. Shetty, D.K., Rosenfield, A.R., Duckworth, W.H.: Mixed mode fracture of ceramic in diametrical compression. J. Am. Ceram. Soc. 69, 437–443 (1986)

    Article  Google Scholar 

  26. Fowell, R.J., Xu, C.: The use of the cracked Brazilian disk geometry for rock fracture investigations. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 31, 571–579 (1994)

    Article  Google Scholar 

  27. Krishnan, G.R., Zhao, X.L., Zaman, M., et al.: Fracture toughness of a soft sandstone. Int. J. Rock Mech. 35, 195–218 (1998)

    Article  Google Scholar 

  28. Khan, K., Al-Shayea, N.A.: Effects of specimen geometry and testing method on mixed-mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech. Rock Eng. 33, 179–206 (2000)

    Article  Google Scholar 

  29. Al-Shayea, N.A., Khan, K., Abduljauwad, S.N.: Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock formation. Int. J. Rock Mech. Rock Sci. 37, 629–643 (2000)

    Article  Google Scholar 

  30. Al-Shayea, N.A., Khan, K., Abdulraheem, A.: Fracture toughness vs. tensile strength reservoir rocks from Saudi Arabia. In: Proceeding of the 2001 ISRM Sponsored International-2nd Asian Rock Mechanics Symposium Beijing, China; 11–14 Sept, pp. 169–172 (2001)

  31. Al-Shayea, N.A.: Crack propagation trajectories for rocks under mixed mode I–II fracture. Eng. Geol. 81, 84–97 (2005)

    Article  Google Scholar 

  32. Tang, C.A., Lin, P., Wong, R.H.C., et al.: Analysis of crack coalescence in rock-like materials containing three flaws—Part II: numerical approach. Int. J. Rock Mech. Min. Sci. 38, 925–939 (2001)

  33. Erdogan, F., Sih, G.C.: On the crack extension in plates under loading and transverse shear. J. Fluids Eng. 85, 519–527 (1963)

    Google Scholar 

  34. Hussian, M.A., Pu, E.L., Underwood, J.H.: Strain energy release rate for a crack under combined mode I and mode II. In: Fracture Analysis, ASTM STP 560. American Society for Testing and Materials. pp. 2–28 (1974)

  35. Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10, 305–321 (1974)

    Article  Google Scholar 

  36. Shen, B., Stephansson, O.: Modification of the G-criterion for crack propagation subjected to compression. Eng. Fract. Mech. 47, 177–189 (1994)

    Article  Google Scholar 

  37. Chen, J.T., Wong, F.C.: Analytical derivations for one-dimensional Eigen problems using dual BEM and MRM. Eng. Anal. Bound. Elem. 20, 25–33 (1997)

    Article  Google Scholar 

  38. Chen, J.T., Hong, H.K.: Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series. Appl. Mech. Rev. ASME 52, 17–33 (1999)

    Article  Google Scholar 

  39. Hong, H.K., Chen, J.T.: Generality and special cases of dual integral equations of elasticity. J. Chin. Soc. Mech. Eng. 9, 1–9 (1988)

    Google Scholar 

  40. Hong, H.K., Chen, J.T.: Derivation of integral equations of elasticity. J. Eng. Mech. ASCE 114, 1028–1044 (1988)

    Article  Google Scholar 

  41. Marji, M.F., Hosseini-nasab, H., Hosseinmorsgedy, A.: Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters. J. Mech. Mater. Struct. 2, 439–457 (2009)

    Google Scholar 

  42. Haeri, H., Shahriar, K., Marji, M.F., et al.: A coupled numerical-experimental study of the breakage process of brittle substances. Arab J. Geosci. (2013). doi:10.1007/s12517-013-1165-1

  43. Haeri, H., Shahriar, K., Marji, M.F., et al.: On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression. Strength Mater. 46, 171–185 (2014)

  44. Irwin, G.R.: Analysis of stress and strains near the end of a crack. J. Appl. Mech. 24, 361 (1957)

  45. Marji, M.F., Dehghani, I.: Kinked crack analysis by a hybridized boundary element/boundary collocation method. Int. J. Solids Struct. 47, 922–933 (2010)

    Article  MATH  Google Scholar 

  46. Marji, M.F., Hosseinin\_Nasab, H., Kohsary, A.H.: On the uses of special crack tip elements in numerical rock fracture mechanics. Int. J. Solids Struct. 43, 1669–1692 (2006)

    Article  MATH  Google Scholar 

  47. Shou, K.J.: A higher order displacement discontinuity method for three-dimensional elastostatic problems. Int. J. Rock Mech. Min. Sci. Geomech. 34, 317–322 (1997)

    Article  Google Scholar 

  48. Shou, K.J.: A two-dimensional displacement discontinuity method for multi-layered elastic media. Int. J. Rock Mech. Min. Sci. Geomech. 34, 509 (1997)

  49. Shou, K.J.: A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation. Tunn. Undergr. Space Technol. 15, 215–226 (2000)

    Article  Google Scholar 

  50. Shou, K.J.: A novel superposition scheme to obtain fundamental boundary element solutions in multi-layered elastic media. Int. J. Numer. Anal. Methods Geomech. 24, 795–814 (2000)

    Article  MATH  Google Scholar 

  51. Shou, K.J., Crouch, S.L.: A Higher order displacement discontinuity method for analysis of crack problems. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 49–55 (1995)

    Article  Google Scholar 

  52. Shou, K.J.: Boundary element analysis of tunneling through a weak zone. J. Geomech. (EI) 1, 25–28 (2006)

    Google Scholar 

  53. Guo, H., Aziz, N.I., Schmidt, R.A.: Linear elastic crack tip modeling by displacement discontinuity method. Eng. Fract. Mech. 36, 933–943 (1990)

    Article  Google Scholar 

  54. Natarajana, S., Mahapatrab, D.R., Bordas, S.P.A.: Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int. J. Numer. Methods Eng. 83, 269–294 (2010)

    Google Scholar 

  55. Scavia, C.: Fracture mechanics approach to stability analysis of crack slopes. Eng. Fract. Mech. 35, 889–910 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by Iran’s National Elites Foundation (INEF). Partial support of the Center of Excellence for Structures and Earthquake Engineering at Sharif University of Technology is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Haeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeri, H., Khaloo, A. & Marji, M.F. Fracture analyses of different pre-holed concrete specimens under compression. Acta Mech. Sin. 31, 855–870 (2015). https://doi.org/10.1007/s10409-015-0436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0436-3

Keywords

Navigation