Skip to main content
Log in

Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The spatial relations between the measurable wall quantities (streamwise shear stress \(\tau _{\mathrm{w}{ x}}\), spanwise shear stress \(\tau _{\mathrm{w}{ z}}\), and pressure fluctuations \(p^\prime _\mathrm{w}\)) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the standard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on \(\tau _{\mathrm{w}{ x}}\) breaks down while the correlations based on \(p^\prime _\mathrm{w}\) and \(\tau _{\mathrm{w}{ z}}\) are still robust. Hence, two wall flow quantities based on \(p^\prime _\mathrm{w}\) and \(\tau _{\mathrm{w}{ z}}\) are proposed to detect the NWSV. As an application, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11 % drag reduction, respectively.

Graphical abstract

The deformation and typical force curve of the mosquito leg when it is pressed onto a water surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kim, J.: Physics and control of wall turbulence for drag reduction. Philos. Trans. R. Soc. A 2011, 1396–1411 (1940)

    Google Scholar 

  2. Viswanath, P.R.: Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571–600 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183–203 (2010)

    Article  Google Scholar 

  4. Guan, X.L., Yao, S.Y., Jiang, N.: A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV. Acta Mech. Sin. 29, 485–493 (2013)

    Article  Google Scholar 

  5. Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179–225 (2001)

    Article  MathSciNet  Google Scholar 

  6. Högberg, M., Bewley, T.R., Henningson, D.S.: Relaminarization of \(\mathit{Re}_\tau = 100\) turbulence using gain scheduling and linear state-feedback control. Phys. Fluids 15, 3572–3575 (2003). (1994-present)

  7. Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  Google Scholar 

  8. Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  Google Scholar 

  9. Xu, C.X., Choi, J.I., Sung, H.J.: Suboptimal control for drag reduction in turbulent pipe flow. Fluid Dyn. Res. 30, 217 (2002)

    Article  Google Scholar 

  10. Fukagata, K., Kasagi, N.: Suboptimal turbulence control algorithm for the modification of Reynolds stress in the near-wall layer. In: Proceedings of the 4th International Symposium on Smart Control of Turbulence, pp. 123–130. Tokyo, Japan (2003)

  11. Lee, C., Kim, J., Babcock, D., et al.: Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9, 1740–1747 (1997)

  12. Gad-el-Hak, M.: The taming of the shrew: why is it so difficult to control turbulence? Active flow control. Berlin Heidelberg, Springer (2007)

  13. Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)

    Article  Google Scholar 

  14. Cattafesta III, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    Article  Google Scholar 

  15. Yoshino, T., Suzuki, Y., Kasagi, N.: Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. J. Fluid Sci. Technol. 3, 137–148 (2008)

    Article  MATH  Google Scholar 

  16. Kravchenko, A.G., Choi, H., Moin, P.: On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A 5, 3307–3309 (1993)

    Article  Google Scholar 

  17. Kim, J., Choi, J.I., Sung, H.J.: Relationship between wall pressure fluctuations and streamwise vortices in a turbulent boundary layer. Phys. Fluids 14, 898–901 (2002)

    Article  Google Scholar 

  18. Xu, C., Zhang, Z., Nieuwstadt, F.T.M., et al.: Origin of high kurtosis levels in the viscous sublayer. Direct Numer. Simul Exp. Phys. Fluids 8, 1938–1944 (1996)

    Google Scholar 

  19. Ge, M.W., Xu, C.X., Cui, G.X.: Transient response of Reynolds stress transport to opposition control in turbulent channel flow. Sci. China Phys. Mech. Astron. 54, 320–328 (2011)

    Article  Google Scholar 

  20. Ge, M., Xu, C., Huang, W., et al.: Transient response of enstrophy transport to opposition control in turbulent channel flow. Appl. Math. Mech. 34, 127–138 (2013)

    Article  MathSciNet  Google Scholar 

  21. Deng, B.Q., Xu, C.X.: Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. J. Fluid Mech. 710, 234–259 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Deng, B.Q., Xu, C.X., Huang, W.X., et al.: Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul. 15, 122–143 (2014)

    Article  Google Scholar 

  23. Fang, L., Shao, L., Bertoglio, J.P., et al.: The rapid-slow decomposition of the subgrid flux in inhomogeneous scalar turbulence. J. Turbul. 12, 1–23 (2011)

    Article  MathSciNet  Google Scholar 

  24. Fang, L., Shao, L., Bertoglio, J.P., et al.: An improved velocity increment model based on Kolmogorov equation of filtered velocity. Phys. Fluids 21, 065108 (2009)

    Article  MATH  Google Scholar 

  25. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Nos. 11402088 and 51376062), the Fundamental Research Funds for the Central Universities (No. 2014MS33) and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No. LAPS15005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Xu, C. & Cui, GX. Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information. Acta Mech. Sin. 31, 512–522 (2015). https://doi.org/10.1007/s10409-015-0427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0427-4

Keywords

Navigation