Skip to main content
Log in

An elastic model for bioinspired design of carbon nanotube bundles

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Collagen fibers provide a good example of making strong micro- or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and cross-linked organization in a bottom-up manner. Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube (CNT) fibers of high performance. In the present work, an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles, and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap, interface cross-link density, and the functionalization-induced degradation in CNTs, etc. With the model, the stress distributions along the CNT–CNT interface as well as in every individual CNT are well captured, and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted. The work may provide useful guidelines for the design of novel CNT fibers in practice.

Graphical Abstract

Mimicking the staggered and cross-linked features of collagen fibril structure has been shown to be a promising approach to develop carbon nanotube (CNT) fibers of high performance. In this work, an elastic model is developed to describe the load transfer and failure propagation within the collagen-inspired CNT bundles. With the model, the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters are established, two failure modes and their transition are predicted, and optimal interface design to eliminate interface stress concentration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  2. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  3. Goh, P.S., Ismail, A.F., Ng, B.C.: Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Compos. Part A: Appl. Sci. Manuf 56, 103–126 (2014)

    Article  Google Scholar 

  4. Filleter, T., Espinosa, H.D.: Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56, 1–11 (2013)

    Article  Google Scholar 

  5. Lu, W., Zu, M., Byun, J.-H., et al.: State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012)

    Article  Google Scholar 

  6. Yan, Y.H., Chan-Park, M.B., Zhang, Q.: Advances in carbon-nanotube assembly. Small 3, 24–42 (2007)

    Article  Google Scholar 

  7. Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., et al.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  8. Kis, A., Csanyi, G., Salvetat, J.P., et al.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153–157 (2004)

    Article  Google Scholar 

  9. Ajayan, P.M., Banhart, F.: Nanotubes: strong bundles. Nat. Mater. 3, 135–136 (2004)

    Article  Google Scholar 

  10. Peng, B., Locascio, M., Zapol, P., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)

    Article  Google Scholar 

  11. Filleter, T., Bernal, R., Li, S., et al.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23, 2855–2860 (2011)

    Article  Google Scholar 

  12. Ni, B., Andrews, R., Jacques, D., et al.: A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J Phys. Chem. B 105, 12719–12725 (2001)

    Article  Google Scholar 

  13. Pregler, S.K., Jeong, B.W., Sinnott, S.B.: Ar beam modification of nanotube based composites using molecular dynamics simulations. Compo. Sci. Technol. 68, 2049–2055 (2008)

    Article  Google Scholar 

  14. O’Brien, N.P., McCarthy, M.A., Curtin, W.A.: A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon 53, 346–356 (2013)

    Article  Google Scholar 

  15. O’Brien, N.P., McCarthy, M.A., Curtin, W.A.: Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 51, 173–184 (2013)

    Article  Google Scholar 

  16. Gong, X.Y., Liu, J., Baskaran, S., et al.: Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049–1052 (2000)

    Article  Google Scholar 

  17. Zhang, Z.Q., Liu, B., Chen, Y.L., et al.: Mechanical properties of functionalized carbon nanotubes. Nanotechnology 19, 395702 (2008)

    Article  Google Scholar 

  18. Mielke, S.L., Troya, D., Zhang, S., et al.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)

    Article  Google Scholar 

  19. Foroughi, J., Spinks, G.M., Wallace, G.G., et al.: Torsional carbon nanotube artificial muscles. Science 334, 494–497 (2011)

    Article  Google Scholar 

  20. Bratzel, G.H., Cranford, S.W., Espinosa, H., et al.: Bioinspired noncovalently crosslinked “fuzzy” carbon nanotube bundles with superior toughness and strength. J. Mater. Chem. 20, 10465–10474 (2010)

  21. Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of waviness on the mechanical properties of carbon nanotube based composites. Phys. E-Low-Dimens. Sys. Nanostructures 43, 1453–1460 (2011)

    Article  Google Scholar 

  22. Wang, H.: Dispersing carbon nanotubes using surfactants. Curr. Opin. Colloid Interface Sci. 14, 364–371 (2009)

    Article  Google Scholar 

  23. Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114, 9805–9811 (2010)

    Article  Google Scholar 

  24. Krause, B., Mende, M., Poetschke, P., et al.: Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48, 2746–2754 (2010)

    Article  Google Scholar 

  25. Sato, H., Sano, M.: Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids Surf. A: Physicochem. Eng. Asp. 322, 103–107 (2008)

    Article  Google Scholar 

  26. Ajayan, P.M., Stephan, O., Colliex, C., et al.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994)

    Article  Google Scholar 

  27. Sulong, A.B., Park, J.: Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: mechanical properties enhancement. J. Compos. Mater. 45, 931–941 (2011)

    Article  Google Scholar 

  28. Jin, L., Bower, C., Zhou, O.: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)

    Article  Google Scholar 

  29. Wang, D., Song, P., Liu, C., et al.: Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19, 075609 (2008)

    Article  Google Scholar 

  30. Kimura, T., Ago, H., Tobita, M., et al.: Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 14, 1380–1383 (2002)

    Article  Google Scholar 

  31. Dror, Y., Salalha, W., Khalfin, R.L., et al.: Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19, 7012–7020 (2003)

  32. Feng, W., Bai, X.D., Lian, Y.Q., et al.: Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41, 1551–1557 (2003)

    Article  Google Scholar 

  33. Zhang, Q., Huang, J.Q., Zhao, M.Q., et al.: Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 46, 1152–1158 (2008)

    Article  Google Scholar 

  34. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., et al.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000)

    Article  Google Scholar 

  35. Bradford, P.D., Wang, X., Zhao, H., et al.: A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos. Sci. Technol. 70, 1980–1985 (2010)

    Article  Google Scholar 

  36. Ryu, S., Lee, Y., Hwang, J.W., et al.: High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23, 1971–1975 (2011)

    Article  Google Scholar 

  37. Buehler, M.J.: Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103, 12285–12290 (2006)

    Article  Google Scholar 

  38. Buehler, M.J.: Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1, 59–67 (2008)

    Article  Google Scholar 

  39. Gao, H., Ji, B., Jager, I.L., et al.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597–5600 (2003)

    Article  Google Scholar 

  40. Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)

    Article  MATH  Google Scholar 

  41. Zhang, Z., Zhang, Y.W., Gao, H.: On optimal hierarchy of load-bearing biological materials. Proc. R. Soc. B 278, 519–525 (2011)

    Article  Google Scholar 

  42. Jager, I., Fratzl, P.: Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737 (2000)

    Article  Google Scholar 

  43. Rho, J.-Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  44. Meyers, M.A., McKittrick, J., Chen, P.-Y.: Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)

    Article  Google Scholar 

  45. Zhang, Z.Q., Liu, B., Huang, Y., et al.: Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J. Mech. Phys. Solids 58, 1646–1660 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhang, Z.Q., Zhong, Y., Liu, B., et al.: Mechanical properties of staggered-alignment biomimetic composites. Adv. Heterog. Mater. Mech. 2008, 606–609 (2008)

    Google Scholar 

  47. Lei, H.F., Zhang, Z.Q., Liu, B.: Effect of fiber arrangement on mechanical properties of short fiber reinforced composites. Compos. Sci. Technol. 72, 506–514 (2012)

    Article  Google Scholar 

  48. Zhang, Z.Q., Liu, B., Zhang, Y.W., et al.: Ultra-strong collagen-mimic carbon nanotube bundles. Carbon 77, 1040–1053 (2014)

    Article  Google Scholar 

  49. Zhao, Z.L., Zhao, H.P., Wang, J.S., et al.: Mechanical properties of carbon nanotube ropes with hierarchical helical structures. J. Mech. Phys. Solids 71, 64–83 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Zuoqi Zhang and Yongwei Zhang acknowledge the support from IHPC, A*STAR. The work is partially supported by the China Postdoctoral Science Foundation (Grant No. 2014M562055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoqi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, Z., Xu, Y. et al. An elastic model for bioinspired design of carbon nanotube bundles. Acta Mech Sin 31, 205–215 (2015). https://doi.org/10.1007/s10409-015-0403-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0403-z

Keywords

Navigation