Skip to main content
Log in

The mechanical behavior of nanoscale metallic multilayers: A survey

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Misra, A., Verdier, M., Lu, Y., et al.: Structure and mechanical properties of Cu–X (\(X = \text{ Nb }\), Cr, Ni) nanolayered composites. Scripta Materialia 39, 555–560 (1998)

    Article  Google Scholar 

  2. Clemens, B.M., Kung, H., Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24, 20–26 (1999)

    Google Scholar 

  3. Misra, A., Kung, H., Embury, J.D.: Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materialia 50, 707–710 (2004)

    Article  Google Scholar 

  4. Bufford, D., Bi, Z., Jia, Q.X., et al.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012)

    Article  Google Scholar 

  5. Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008)

    Article  Google Scholar 

  6. Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Ultrahigh strength and ductility of Cu–Nb nanolayered composites. Mater. Sci. Forum 633–634, 647–653 (2009)

    Article  Google Scholar 

  7. Misra, A., Zhang, X., Hammon, D., et al.: Work hardening in rolled nanolayered metallic composites. Acta Materialia 53, 221–226 (2005)

    Article  Google Scholar 

  8. Zhang, J.Y., Zhang, X., Wang, R.H., et al.: Length-scale-dependent deformation and fracture behavior of Cu/X (\(X = \text{ Nb }\), Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Materialia 59, 7368–7379 (2011)

    Article  Google Scholar 

  9. Demkowicz, M.J., Hoagland, R.G., Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008)

    Article  Google Scholar 

  10. Han, W.Z., Demkowicz, M.J., Mara, N.A., et al.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975–6979 (2013)

    Article  Google Scholar 

  11. Hattar, K., Demkowicz, M.J., Misra, A., et al.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposite. Scripta Materialia 58, 541–544 (2008)

    Article  Google Scholar 

  12. Li, N., Nastasi, M., Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32–33, 1–16 (2012)

    Article  Google Scholar 

  13. Han, W.Z., Misra, A., Mara, N.A., et al.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172–4185 (2011)

    Article  Google Scholar 

  14. Han, W.Z., Cerreta, E.K., Mara, N.A., et al.: Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Materialia 63, 150–161 (2014)

    Article  Google Scholar 

  15. Misra, A., Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046–2054 (2005)

    Article  Google Scholar 

  16. Zheng, S., Beyerlein, I.J., Carpenter, J.S., et al.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013)

    Article  Google Scholar 

  17. Wen, S.P., Zong, R.L., Zeng, F., et al.: Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf. Coat. Technol. 202, 2040–2046 (2008)

    Article  Google Scholar 

  18. Dew-Hughes, D.: High strength conductor for pulsed magnets. Mater. Sci. Eng. A 168, 35–40 (1993)

    Article  Google Scholar 

  19. Freudenberger, J., Grunberger, W., Botcharova, E., et al.: Mechanical properties of Cu-based micro- and macrocomposites. Adv. Eng. Mater. 4, 677–681 (2002)

    Article  Google Scholar 

  20. Sandim, M.J.R., Stamopoulos, D., Ghivelder, L., et al.: Paramagnetic meissner effect and AC magnetization in roll-bonded Cu–Nb layered composites. J. Superconduct. Novel Magn. 23, 1533–1541 (2010)

    Article  Google Scholar 

  21. Beyerlein, I.J., Wang, J., Zhang, R.: Mapping dislocation nucleation behavior from bimetal interfaces. Acta Materialia 61, 7488–7499 (2013)

    Article  Google Scholar 

  22. Mara, N.A., Beyerlein, I.J.: Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497–6516 (2014)

    Article  Google Scholar 

  23. Zhou, Q., Wang, F., Huang, P., et al.: Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers. Thin Solid Films 571, 253–259 (2014)

  24. Geng, H.: Semiconductor Manufacturing Handbook, 1st edn. McGraw-Hill Professional, Blacklick (2005)

    Google Scholar 

  25. Thompson, C.V.: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245–268 (1990)

    Article  Google Scholar 

  26. Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)

    Article  Google Scholar 

  27. Wei, Q., Misra, A.: Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers. Acta Materialia 58, 4871–4882 (2010)

  28. Chirranjeevi, B.G., Abinandanan, T.A., Gururajan, M.P.: A phase field study of morphological instabilities in multilayer thin films. Acta Materialia 57, 1060–1067 (2009)

    Article  Google Scholar 

  29. Bakonyi, I., Peter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater. Sci. 55, 107–245 (2010)

    Article  Google Scholar 

  30. Yahalom, J., Tessier, D.F., Timsit, R.S., et al.: Structure of composition-modulated Cu/Ni thin-films prepared by electrodeposition. J. Mater. Res. 4, 755–758 (1989)

    Article  Google Scholar 

  31. Haseeb, A.S.M.A., Celis, J.P., Roos, J.R.: Dual-bath electrodeposition of Cu/Ni compositionally modulated multilayers. J. Electrochem. Soc. 141, 230–237 (1994)

    Article  Google Scholar 

  32. Toth-Kadar, E., Peter, L., Becsei, T., et al.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311–3318 (2000)

    Article  Google Scholar 

  33. Wen, S.P., Zeng, F., Pan, F., et al.: The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers. Mater. Sci. Eng. A 526, 166–170 (2009)

    Article  Google Scholar 

  34. Wen, S.P., Zeng, F., Gao, Y., et al.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia 55, 187–190 (2006)

    Article  Google Scholar 

  35. Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. J. Mater. Res. 22, 3423–3431 (2007)

    Article  Google Scholar 

  36. Wen, S.P., Zong, R.L., Zeng, F., et al.: Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Materialia 55, 345–351 (2007)

    Article  Google Scholar 

  37. Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255, 4558–4562 (2009)

    Article  Google Scholar 

  38. Zhu, X.Y., Liu, X.J., Zong, R.L., et al.: Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater. Sci. Eng. A 527, 1243–1248 (2010)

    Article  Google Scholar 

  39. Liu, Y., Bufford, D., Wang, H., et al.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia 59, 1924–1933 (2011)

    Article  Google Scholar 

  40. Liu, Y., Chen, Y., Yu, K.Y., et al.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152–163 (2013)

    Article  Google Scholar 

  41. Zhu, X.Y., Luo, J.T., Chen, G., et al.: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434–440 (2010)

    Article  Google Scholar 

  42. Zhu, X.Y., Luo, J.T., Zeng, F., et al.: Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 520, 818–823 (2011)

    Article  Google Scholar 

  43. Wang, F., Zhang, L.F., Huang, P., et al.: Microstructure and flow stress of nanoscale Cu/Nb multilayers. J. Nanomater. (2013). doi:10.1155/2013/912548

  44. Bauer, E., Merwe, J.H.V.D.: Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986)

    Article  Google Scholar 

  45. Zhou, Q., Li, Y., Wang, F., et al.: Length-scale-dependent mechanical properties of Cu/Ru multilayer films: Part I. Microstructure and strengthening mechanisms. (To be submitted to Acta Mater.)

  46. Lewis, A.C., Josell, D., Weihs, T.P.: Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia 48, 1079–1085 (2003)

    Article  Google Scholar 

  47. Misra, A., Hoagland, R.G., Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021–1028 (2004)

    Article  Google Scholar 

  48. Wan, H., Shen, Y., Wang, J., et al.: A predictive model for microstructure evolution in metallic multilayers with immiscible constituents. Acta Materialia 60, 6869–6881 (2012)

    Article  Google Scholar 

  49. Beyerlein, I.J., Mara, N.A., Wang, J., et al.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192–1207 (2012)

    Article  Google Scholar 

  50. Kang, K., Wang, J., Beyerlein, I.J.: Atomic structure variations of mechanically stable fcc–bcc interfaces. J. Appl. Phys. 5, 053531 (2012)

    Article  Google Scholar 

  51. Wang, J., Hoagland, R.G., Misra, A.: Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Materialia 60, 1067–1072 (2009)

    Article  Google Scholar 

  52. Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia 56, 5685–5693 (2008)

    Article  Google Scholar 

  53. Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Materialia 56, 3109–3119 (2008)

    Article  Google Scholar 

  54. Hoagland, R.G., Kurtz, R.J., Henager Jr, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia 50, 775–779 (2004)

    Article  Google Scholar 

  55. Beyerlein, I.J., Wang, J., Zhang, R.: Interface-dependent nucleation in nanostructured layered composites. APL Mater. 1, 032112 (2013)

    Article  Google Scholar 

  56. Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Materialia 60, 2855–2865 (2012)

    Article  Google Scholar 

  57. Kulkarni, Y., Asaro, R.J.: Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? Acta Materialia 57, 4835–4844 (2009)

    Article  Google Scholar 

  58. Zhang, X., Misra, A., Wang, H., et al.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096–1098 (2004)

    Article  Google Scholar 

  59. Lu, L., Shen, Y.F., Chen, X.H., et al.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)

    Article  Google Scholar 

  60. Zhang, X., Misra, A.: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia 66, 860–865 (2012)

    Article  Google Scholar 

  61. Anderoglu, O., Misra, A., Wang, J., et al.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875–886 (2010)

    Article  MATH  Google Scholar 

  62. Li, N., Wang, J., Misra, A., et al.: Twinning dislocation multiplication at a coherent twin boundary. Acta Materialia 59, 5989–5996 (2011)

    Article  Google Scholar 

  63. Lu, L., Shen, Y.F., Dao, M., et al.: Strain rate sensitivity of Cu with nanoscale twins. Scripta Materialia 55, 319–322 (2006)

    Article  Google Scholar 

  64. Liu, Y., Bufford, D., Rioset, S., et al.: A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111, 073526 (2012)

    Article  Google Scholar 

  65. Bufford, D., Liu, Y., Zhu, Y., et al.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51–60 (2013)

    Article  Google Scholar 

  66. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  67. Mata, M., Anglada, M., Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964–976 (2002)

    Article  Google Scholar 

  68. Blum, W.: The structure and properties of alternately deposited metals. Trans. Am. Electrochem. Soc. 40, 307–320 (1921)

    Google Scholar 

  69. Misra, A., Hirth, J.P., Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935–2951 (2002)

    Article  Google Scholar 

  70. Tench, D.M., White, J.T.: Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J. Electrochem. Soc. 138, 3757–3758 (1991)

    Article  Google Scholar 

  71. Carpenter, J.S., Misra, A., Uchic, M.D., et al.: Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl. Phys. Lett. 101, 051901 (2012)

    Article  Google Scholar 

  72. Carpenter, J.S., Misra, A., Anderson, P.M.: Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Materialia 60, 2625–2636 (2012)

    Article  Google Scholar 

  73. Cammarata, R.C., Schlesinger, T.E., Kim, C., et al.: Nanoindentation study of the mechanical-properties of cppper–nickel multilayered thin-films. Appl. Phys. Lett. 56, 1862–1864 (1990)

    Article  Google Scholar 

  74. Rao, S.I., Hazzledine, P.M.: Atomistic simulations of dislocation–interface interactions in the Cu–Ni multilayer system. Philos. Mag. A 80, 2011–2040 (2000)

    Article  Google Scholar 

  75. Hoagland, R.G., Mitchell, T.E., Hirth, J.P., et al.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643–664 (2002)

    Google Scholar 

  76. Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia 53, 4817–4824 (2005)

    Article  Google Scholar 

  77. Zhang, J.Y., Zhang, P., Zhang, X., et al.: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng. A 545, 118–122 (2012)

    Article  Google Scholar 

  78. Mara, N.A., Bhattacharyya, D., Hoagland, R.G., et al.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Materialia 58, 874–877 (2008)

    Article  Google Scholar 

  79. Fu, E.G., Li, N., Misra, A., et al.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283–287 (2008)

    Article  Google Scholar 

  80. Koehler, J.: Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970)

    Article  Google Scholar 

  81. Akcakaya, E., Famell, G.W., Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 (1990)

    Article  Google Scholar 

  82. Li, Y.P., Zhu, X.F., Zhang, G.P., et al.: Investigation of deformation instability of Au/Cu multilayers by indentation. Philos. Mag. 90, 3049–3067 (2010)

    Article  Google Scholar 

  83. Chen, Y., Liu, Y., Sun, C., et al.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Materialia 60, 6312–6321 (2012)

    Article  Google Scholar 

  84. Huang, P., Wang, F., Xu, M., et al.: Strain rate sensitivity of unequal grained nano-multilayers. Mater. Sci. Eng. A 528, 5908–5913 (2011)

    Article  Google Scholar 

  85. Zhang, J.Y., Liu, Y., Chen, J., et al.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng. A 552, 392–398 (2012)

    Article  Google Scholar 

  86. Hu, K., Xu, L.J., Cao, Y.Q., et al.: Modulating individual thickness for optimized combination of strength and ductility inCu/Ru multilayer films. Mater. Lett. 107, 303–306 (2013)

  87. Lai, W.S., Yang, M.J.: Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation. Appl. Phys. Lett. 90, 181917 (2007)

  88. Wen, S.P., Zeng, F., Gao, Y., et al.: Microstructure and nanoindentation investigation of magnetron sputtering Ag/Co multilayers. Surf. Coat. Technol. 201, 1262–1266 (2006)

    Article  Google Scholar 

  89. Wen, S.P., Zong, R.L., Zeng, F., et al.: Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers. Mater. Sci. Eng. A 457, 38–43 (2007)

    Article  Google Scholar 

  90. Abadias, G., Jaouen, C., Martin, F., et al.: Experimental evidence for the role of supersaturated interfacial alloys on the shear elastic softening of Ni/Mo superlattices. Phys. Rev. B 65, 212105 (2002)

    Article  Google Scholar 

  91. Zhang, J.Y., Niu, J.J., Zhang, X., et al.: Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus. Mater. Sci. Eng. A 543, 139–144 (2012)

    Article  Google Scholar 

  92. Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48, 3261–3269 (2000)

    Article  Google Scholar 

  93. Zhang, J.Y., Lei, S., Liu, Y., et al.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Materialia 60, 1610–1622 (2012)

    Article  Google Scholar 

  94. Mara, N.A., Bhattacharyya, D., Hirth, J.P., et al.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010)

    Article  Google Scholar 

  95. Carpenter, J.S., Vogel, S.C., LeDonne, J.E., et al.: Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Materialia 60, 1576–1586 (2012)

    Article  Google Scholar 

  96. Anderson, P.M., Bingert, J.F., Misra, A., et al.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Materialia 51, 6059–6075 (2003)

    Article  Google Scholar 

  97. Misra, A., Kung, H., Hammon, D., et al.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365–376 (2003)

    Article  Google Scholar 

  98. Hsia, K.J., Suo, Z., Yang, W.: Cleavage due to dislocation confinement in layered materials. J. Mech. Phys. Solids 42, 877–896 (1994)

    Article  Google Scholar 

  99. Was, G.S., Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1–31 (1996)

    Article  Google Scholar 

  100. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1989)

    Google Scholar 

  101. Zhang, J.Y., Liu, G., Sun, J., et al.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng. A 528, 2982–2987 (2011)

    Article  Google Scholar 

  102. Zhou, Q., Zhao, J., Xie, J.Y., et al.: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184–189 (2014)

    Article  Google Scholar 

  103. Lu, L., Schwaiger, R., Shan, Z.W., et al.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia 53, 2169–2179 (2005)

    Article  Google Scholar 

  104. Schwaiger, R., Moser, B., Dao, M., et al.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Materialia 51, 5159–5172 (2003)

    Article  Google Scholar 

  105. Wei, Q., Cheng, S., Ramesh, K.T., et al.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)

    Article  Google Scholar 

  106. Wang, F., Li, B., Gao, T.T., et al.: Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti. Surf. Coat. Technol. 228, S254–S256 (2012)

    Article  Google Scholar 

  107. Niu, J.J., Zhang, J.Y., Liu, G., et al.: Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (\(X=\text{ Cr }\), Zr) multilayer films. Acta Materialia 60, 3677–3689 (2012)

    Article  Google Scholar 

  108. Zhu, X.Y., Liu, X.J., Zeng, F., et al.: Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers. Mater. Lett. 64, 53–56 (2010)

    Article  Google Scholar 

  109. Shen, B.L., Itoi, T., Yamasaki, T., et al.: Indentation creep of nanocrystalline Cu–TiC alloys prepared by mechanical alloying. Scripta Materialia 42, 893–898 (2000)

    Article  Google Scholar 

  110. Wang, J., Hoagland, R.G., Misra, A.: Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 94, 131910 (2009)

    Article  Google Scholar 

  111. Kang, B.C., Kim, H.Y., Kwon, O.Y., et al.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Materialia 57, 703–706 (2007)

    Article  Google Scholar 

  112. Zhang, J.Y., Wang, Y.Q., Wu, K., et al.: Strain rate sensitivity of nanolayered Cu/X (\(X=\text{ Cr }\), Zr) micropillars: effects of heterophase interface/twin boundary. Mater. Sci. Eng. A 61, 228–240 (2014)

    Google Scholar 

  113. Friedman, L.H., Chrzan, D.C.: Scaling theory of the Hall–Petch relation for multilayers. Phys. Rev. Lett. 81, 2715–2718 (1998)

    Article  Google Scholar 

  114. Embury, J.D., Hirth, J.P.: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metallurgica et Materialia 42, 2051–2056 (1994)

    Article  Google Scholar 

  115. Anderson, P.M., Foecke, T., Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27–33 (1999)

    Google Scholar 

  116. Wang, J., Misra, A.: Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18, 19–28 (2014)

    Article  Google Scholar 

  117. Kramer, D.E., Foecke, T.: Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos. Mag. A 82, 3375–3381 (2002)

    Article  Google Scholar 

  118. Tu, K., Mayer, J.W., Feldman, L.C.: Electronic Thin Film Science: for Electrical Engineers and Materials Scientists. Macmillan, New York (1992)

    Google Scholar 

  119. Misra, A., Verdier, M., Kung, H., et al.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Materialia 41, 973–979 (1999)

    Article  Google Scholar 

  120. Yan, J.W., Zhu, X.F., Zhang, G.P., et al.: Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527, 227–231 (2013)

    Article  Google Scholar 

  121. Kamat, S.V., Hirth, J.P.: Dislocation injection in strained multilayer structures. J. Appl. Phys. 67, 6844–6850 (1990)

    Article  Google Scholar 

  122. Mastorakos, I.N., Zbib, H.M., Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009)

    Article  Google Scholar 

  123. Lehoczky, S.L.: Strength enhancement in thin-layered Al–Cu laminates. J. Appl. Phys. 49, 5479–5485 (1978)

    Article  Google Scholar 

  124. Shinn, M., Hultman, L., Barnett, S.A.: Growth, structure, and microhardness of epitaxial TIN/NBN superlattices. J. Mater. Res. 7, 901–911 (1992)

    Article  Google Scholar 

  125. Xu, J.H., Kamiko, M., Sawada, H., et al.: Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 21, 2584–2589 (2003)

    Article  Google Scholar 

  126. Li, Y.P., Zhang, G.P., Wang, W.: On interface strengthening ability in metallic multilayers. Scripta Materialia 57, 117–120 (2007)

    Article  Google Scholar 

  127. Kim, C., Qadri, S.B., Scanlon, M.R., et al.: Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films 240, 52–55 (1994)

    Article  Google Scholar 

  128. Lu, Y.Y., Kotoka, R., Ligda, J.P., et al.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia 63, 216–231 (2014)

  129. Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger, Malabar (1992)

    Google Scholar 

  130. Wang, J., Hoagland, R.G., Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009–1014 (2008)

    Article  Google Scholar 

  131. Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Materialia 65, 1022–1025 (2011)

  132. Zhang, G.P., Liu, Y., Wang, W., et al.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006)

    Article  Google Scholar 

  133. Li, Y.P., Tan, J., Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Materialia 59, 1226–1229 (2008)

    Article  Google Scholar 

  134. Xie, J.Y., Huang, P., Wang, F., et al.: Shear banding behavior in nanoscale Al/W multilayers. Surf. Coat. Technol. 228, S593–S596 (2013)

    Article  Google Scholar 

  135. Li, Y.P., Zhu, X.F., Tan, J., et al.: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89, 66–74 (2009)

    Article  Google Scholar 

  136. Bhattacharyya, D., Mara, N.A., Dickerson, P., et al.: Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24, 1291–1302 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 51171141, 51271141, and 51471131) and the Program for New Century Excellent Talents in University (Grant NCET-11-0431).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Wang or T. J. Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Xie, J.Y., Wang, F. et al. The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech Sin 31, 319–337 (2015). https://doi.org/10.1007/s10409-015-0401-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0401-1

Keywords

Navigation