Skip to main content
Log in

Simulation of the Brownian coagulation of nanoparticles with initial bimodal size distribution via moment method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diameter and geometric standard deviation are given in the free molecular regime, the continuum regime, the free molecular regime and transition regime, the free molecular regime and continuum regime, respectively. The results show that, both in the free molecular regime and the continuum regime, the number concentration of mode i and j decreases with increasing time. The evolutions of particle geometric average diameter with different initial size distribution are quite different. Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed. As time goes by, the size distribution with initial bimodal turns to be unimodal and shifts to a larger particle size range. In the free molecular regime and transition regime, the inter-modal coagulation becomes dominant when the number concentrations of mode i and j are of the same order. The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible, while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct. In the free molecular regime and continuum regime, the higher the initial number concentration of mode j, the more obvious the variation of the number concentration of mode i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, M. K., Friedlander, S.K.: Enhanced power law agglomerate growth in the free molecule regime. Journal of Aerosol Science 24, 273–282 (1993)

    Article  Google Scholar 

  2. Vemury, S., Pratsinis, S.E.: Self-preserving size distributions of agglomerates. Journal of Aerosol Science 26, 175–185 (1995)

    Article  Google Scholar 

  3. Oh, C., Sorensen, C.M.: Light scattering study of fractal cluster aggregation near the free molecular regime. Journal of Aerosol Science 28, 937–957 (1997)

    Article  Google Scholar 

  4. Kostoglou, M., Konstandopoulos, A.G.: Evolution of aggregate size and fractal dimension during Brownian coagulation. Journal of Aerosol Science 32, 1399–1420 (2001)

    Article  Google Scholar 

  5. Dekkers, P. J., Friedlander, S.K.: The self-preserving size distribution theory: I. Effects of the Knudsen number on aerosol agglomerate growth. Journal of Colloid and Interface Science 248, 295–305 (2002)

    Article  Google Scholar 

  6. Efendiev, Y., Zachariah, M.R.: Hierarchical hybrid Monte-Carlo method for simulation of two-component aerosol nucleation, coagulation and phase segregation. Journal of Aerosol Science 34, 169–188 (2003)

    Article  Google Scholar 

  7. Settumba, N., Garrick, S.C.: Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. Journal of Aerosol Science 34, 149–167 (2003)

    Article  Google Scholar 

  8. Zurita-Gotor, M., Rosner, D.E.: Aggregate size distribution evolution for Brownian coagulation — sensitivity to an improved rate constant. Journal of Colloid and Interface Science 274, 502–514 (2004)

    Article  Google Scholar 

  9. Zhao, H. B., Zheng C.G., Xu, M.H.: Multi-Monte Carlo method for particle coagulation: description and validation. Applied Mathematics and Computation 167, 1383–1399 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, G., Garrick, S.C.: Modeling and simulation of titania formation and growth in temporal mixing layers. Journal of Aerosol Science 37, 431–451 (2006)

    Article  Google Scholar 

  11. Yu, M. Z., Lin, J.Z., Chen, L.H.: Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mechanica Sinica 22, 293–300 (2006)

    Article  MATH  Google Scholar 

  12. Yu, M. Z., Lin, J.Z., Chan, T.L.: Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor. Chemical Engineering Science 63, 2317–2329 (2008)

    Article  Google Scholar 

  13. Yu, M. Z., Lin, J.Z., Chan, T.L.: Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Tech nology 181, 9–20 (2008)

    Article  Google Scholar 

  14. Yu, M. Z., Lin J.Z., Chan, T.L.: A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology 42, 705–713 (2008)

    Article  Google Scholar 

  15. Dang, H. Y., Swihart, M.T.: Computational modeling of silicon nanoparticle synthesis: I. A general two-dimensional model. Aerosol Science and Technology 43, 250–263 (2009)

    Article  Google Scholar 

  16. Yu, M. Z., Lin, J.Z.: Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method. Journal of Colloid and Interface Science 336, 142–149 (2009)

    Article  Google Scholar 

  17. Yu, M. Z., Lin, J.Z.: Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime. Journal of Aerosol Science 40, 549–562 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lin, J. Z., Lin, P.F., Chen, H.J.: Research on the transport and deposition of nanoparticles in a rotating curved pipe. Physics of Fluids 21, 1–11 (2009)

    Google Scholar 

  19. Isella, L., Drossinos, Y.: Langevin agglomeration of nanoparticles interacting via a central potential. Physical Review E 82, 011404 (2010)

    Article  Google Scholar 

  20. Lin, J. Z., Liu, Y.H.: Nanoparticle nucleation and coagulation in a mixing layer. Acta Mechanica Sinica 26, 521–529 (2010)

    Article  MathSciNet  Google Scholar 

  21. Das, S., Garrick, S.C.: The effects of turbulence on nanoparticle growth in turbulent reacting jets. Physics of Fluid 22, 103303 (2010)

    Article  Google Scholar 

  22. Jaenicke, R.: Tropospheric aerosols. Aerosol-cloud-climate Interactions. (Hobbs P.V. ed.) Academic Press, San Diego (1993)

    Google Scholar 

  23. Kittelson, D. B.: Engines and nanoparticles: A review. Journal of Aerosol Science 29, 575–588 (1998)

    Article  Google Scholar 

  24. de Reus, M., Dentener, F., Thomas, A., et al.: Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction. J. Geophys. Res. 105, 15263–15275 (2000)

    Article  Google Scholar 

  25. Binkowski, F. S., Shankar, U.: The regional particulate matter model 1. Model description and preliminary results. J. Geophys. Res. 100, 26191–26209 (1995)

    Article  Google Scholar 

  26. Ackermann, I. J., Hass, H., Memmesheimer, M., et al.: Modal aerosol dynamics model for Europe: development and first applications. Atmospheric Environment 32, 2981–2999 (1998)

    Article  Google Scholar 

  27. Whitby, E. R., McMurry, P.H.: Modal aerosol dynamics modeling. Aerosol Science and Technology 27, 673–688 (1997).

    Article  Google Scholar 

  28. Sheng, C. D., Shen, X.L.: Simulation of acoustic agglomeration processes of polydisperse solid particles. Aerosol Science and Technology 41, 1–13 (2007)

    Article  Google Scholar 

  29. Klink, I. M., Phillips, R.J., Dungan, S.R.: Effect of emulsion drop-size distribution upon coalescence in simple shear flow: A population balance study. Journal of Colloid and Interface Science 353, 467–475 (2011)

    Article  Google Scholar 

  30. Smoluchowski, M.: Mathematical theory of the kinetic of the coagulation of colloidal solutions. Zeitschrift fur Physikalische Chemie 92, 129–168 (1917)

    Google Scholar 

  31. Muller, H.: Zur allgemeinen theorie der raschen koagulation. Kolloideihefte 27, 223–250 (1928)

    Google Scholar 

  32. Lee, K. W., Chen, H.: Coagulation rate of polydisperse particles. Aerosol Science and Technology 3, 327–334 (1984)

    Article  Google Scholar 

  33. Otto, E., Fissan, H., Park, S.H., et al.: The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: part II-analytical solution using Dahneke’s coagulation kernel. Journal of Aerosol Science 30, 17–34 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Lin.

Additional information

The project was supported by the Major Program of National Natural Science Foundation of China (11132008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JZ., Gan, FJ. Simulation of the Brownian coagulation of nanoparticles with initial bimodal size distribution via moment method. Acta Mech Sin 28, 1227–1237 (2012). https://doi.org/10.1007/s10409-012-0097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0097-4

Keywords

Navigation