Skip to main content
Log in

Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Caputo M., Mainardi F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)

    Article  Google Scholar 

  2. Slonimsky G.L.: On the law of deformation of highly elastic polymeric bodies. Dokl. Akad. Nauk BSSR 140, 343–346 (1961)

    Google Scholar 

  3. Stiassnie M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Modell. 3, 300–302 (1979)

    Article  MATH  Google Scholar 

  4. Mainardi F.: Applications of fractional calculus in mechanics. In: Rusev, P., Dimovschi, I., Kiryakova, V. (eds) Transform Methods and Special Functions, Varna’96, pp. 309–334. Bulgarian Academy of Sciences, Sofia (1998)

    Google Scholar 

  5. Bagley R.L., Torvik P.J.: A theoretical basis for the application of fractional calculus to viscoelastisity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  6. Bagley R.L., Torvik P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  7. Rogers L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983)

    Article  MATH  Google Scholar 

  8. Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  9. Xu M., Tan W.: Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A 44, 1387–1399 (2001)

    Article  MATH  Google Scholar 

  10. Xu M., Tan W.: The representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China Ser. G 46, 145–157 (2003)

    Article  Google Scholar 

  11. Debnath L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  13. Rouse P.E.: The theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)

    Article  Google Scholar 

  14. Ferry J.D., Landel R.F., Williams M.L.: Extensions of the Rouse theory of viscoelastic properties to undiluted linear polymers. J. Appl. Phys. 26, 359–362 (1955)

    Article  Google Scholar 

  15. Stokes G.G.: On the Effect of the Rotation of Cylinders and Spheres About Their Own Axes in Increasing the Logarithmic Decrement of the Arc of Vibration, pp. 204–217. Cambridge University Press, Cambridge (1886)

    Google Scholar 

  16. Casarella M.J., Laura P.A.: Drag on oscillating rod with longitudinal and torsional motion. J. Hydronaut. 3, 180–183 (1969)

    Article  Google Scholar 

  17. Rajagopal K.R.: Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid. Acta Mech. 49, 281–285 (1983)

    Article  MATH  Google Scholar 

  18. Rajagopal K.R., Bhatnagar R.K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113, 233–239 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khan, M., Asghar, S., Hayat, T.: Oscillating flow of a Burgers’ fluid in a pipe. The Abdus Salam International Center for Theoretical Physics, IC/2005/071

  20. Fetecau C., Fetecau C.: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder. Int. J. Eng. Sci. 44, 788–796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahmood A., Parveen S., Ara A. et al.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simulat. 14, 3309–3319 (2009)

    Article  Google Scholar 

  22. Vieru D., Akhtar W., Fetecau C. et al.: Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains. Meccanica 42, 573–583 (2007)

    Article  MATH  Google Scholar 

  23. Fetecau C., Hayat T., Fetecau C.: Starting solutions for oscillating motions of Oldroyd-B fluids in cylindrical domains. J. Non-Newtonian Fluid Mech. 153, 191–201 (2008)

    Article  Google Scholar 

  24. Massoudi M., Phuoc T.X.: On the motion of a second grade fluid due to longitudinal and torsional oscillations of a cylinder: a numerical study. Appl. Math. Comput. 203(4), 471–481 (2008)

    Article  MATH  Google Scholar 

  25. Khan M., Ali S.H., Qi H.: Exact solutions of starting flows for a fractional Burgers’ fluid between coaxial cylinders. Nonlinear Anal. Real World Appl. 10(3), 1775–1783 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tong D., Wang R., Yang H.: Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci. China Ser. G 48, 485–495 (2005)

    Article  Google Scholar 

  27. Tan W.C., Xu M.Y.: The impulsive motion of flat plate in a generalized second grade fluid. Mech. Res. Commun. 29, 3–9 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shen F., Tan W.C., Zhao Y. et al.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Non-linear Anal. Real World Appl. 7, 1072–1080 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fetecau C., Mahmood A., Fetecau C. et al.: Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder. Comput. Math. Appl. 56, 3096–3108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sneddon I.N.: Functional Analysis in: Encyclopedia of Physics, vol. II. Springer, Berlin (1955)

    Google Scholar 

  31. Lorenzo. C.F., Hartley, T.T.: Generalized functions for the fractional calculus. NASA/TP-1999-209424/Rev1 (1999)

  32. Debnath L., Bhatta D.: Integral Transforms and Their Applications, 2nd edn. Chapman & Hall/CRC, London (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, A., Fetecau, C., Khan, N.A. et al. Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders. Acta Mech Sin 26, 541–550 (2010). https://doi.org/10.1007/s10409-010-0353-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0353-4

Keywords

Navigation