Skip to main content
Log in

Flows and instabilities of ferrofluids at the microscale

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In the present work we report on the behavior of ferrofluid microdrops in an immiscible nonmagnetic carrier fluid and vice versa subjected to the action of magnetic fields. Our experiments evidence previously unexplored instability and flow patterns. We investigated the instabilities initiated by constant magnetic field and by combined action of constant and rotating magnetic fields. The observed instabilities lead to the formation of various microdrop configurations such as star-like and comb-like shapes, bending deformation, ridges and crests, spiral arms and rings, etc. The reviled peculiarities of the microscopic drops behavior can be of interest in applications to the ferrofluid-based microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afkhami S, Tyler AJ, Renardy Y, Renardy M, St Pierre TG, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384

    Article  MathSciNet  MATH  Google Scholar 

  • Bacri JC, Salin D (1982) Study of the deformation of ferrofluid droplets in a magnetic field. J Phys Lett 43:L-179–L-184

    Article  Google Scholar 

  • Bacri JC, Levelut A, Perzynski R, Salin D (1988) Multiple scissions of ionic ferrofluid drops. Chem Eng Commun 67:205–216

    Article  Google Scholar 

  • Bacri JC, Cebers A, Perzynski R (1994) Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys Rev Lett 72:2705–2708

    Article  Google Scholar 

  • Bacri JC, Cebers A, Flament C, Lacis S, Melliti R, Perzynski R (1995) Fingering phenomena at bending instability of a magnetic fluid stripe. Prog Colloid Polym Sci 98:30–34

    Article  Google Scholar 

  • Blums E, Cebers A, Maiorov MM (1997) Magnetic fluids. de Gruyter, Berlin

    Google Scholar 

  • Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York

    MATH  Google Scholar 

  • Chen CY, Tsai WK, Miranda JA (2008) Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys Rev E 77:056306

    Article  Google Scholar 

  • Chen CY, Yang YS, Miranda JA (2009) Miscible ferrofluid patterns in a radial magnetic field. Phys Rev E 80:016314

    Article  Google Scholar 

  • Chen CY, Wu WL, Miranda JA (2010) Magnetically induced spreading and pattern selection in thin ferrofluid drops. Phys Rev E 82:056321

    Article  Google Scholar 

  • Dickstein AJ, Erramilli S, Goldstein RE, Jackson DP, Langer SA (1993) Labyrinthine pattern formation in magnetic fluids. Science 261:1012–1015

    Article  Google Scholar 

  • Dikansky YuI, Zakinyan AR (2010) Dynamics of a nonmagnetic drop suspended in a magnetic fluid in a rotating magnetic field. Tech Phys 55:1082–1086

    Article  Google Scholar 

  • Drozdova VI, Skibin YuN, Chekanov VV (1981) Oscillation of a drop of magnetic liquid. Magnetohydrodynamics 17:320–324

    Google Scholar 

  • Elborai S, Kim DK, He X, Lee SH, Rhodes S, Zahn M (2005) Self-forming, quasi-two-dimensional, magnetic-fluid patterns with applied in-plane-rotating and dc-axial magnetic fields. J Appl Phys 97:10Q303

    Article  Google Scholar 

  • Elias F, Flament C, Bacri JC, Neveu S (1997) Macro-organized patterns in ferrofluid layer: experimental studies. J Phys I 7:711–728

    Google Scholar 

  • Horng HE, Hong CY, Yang SY, Yang HC (2001) Novel properties and applications in magnetic fluids. J Phys Chem Solids 62:1749–1764

    Article  Google Scholar 

  • Jackson DP, Miranda JA (2007) Confined ferrofluid droplet in crossed magnetic fields. Eur Phys J E 23:389–396

    Article  Google Scholar 

  • Jackson DP, Goldstein RE, Cebers AO (1994) Hydrodynamics of fingering instabilities in dipolar fluids. Phys Rev E 50:298–307

    Article  Google Scholar 

  • Jamin T, Py C, Falcon E (2011) Instability of the origami of a ferrofluid drop in a magnetic field. Phys Rev Lett 107:204503

    Article  Google Scholar 

  • Janiaud E, Elias F, Bacri JC, Cabuil V, Perzynski R (2000) Spinning ferrofluid microscopic droplets. Magnetohydrodynamics 36:301–314

    Article  MATH  Google Scholar 

  • Lebedev AV, Engel A, Morozov KI, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. New J Phys 5:57.1–57.20

    Article  Google Scholar 

  • Liu J, Tan SH, Yap YF, Ng MY, Nguyen NT (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11:177–187

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Nguyen NT, Beyzavi A, Ng KM, Huang X (2007) Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluid Nanofluid 3:571–579

    Article  Google Scholar 

  • Ody T, Panth M, Sommers AD, Eid KF (2016) Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir 32:6967–6976

    Article  Google Scholar 

  • Rinaldi C, Chaves A, Elborai S, He XT, Zahn M (2005) Magnetic fluid rheology and flows. Curr Opin Colloid Interface Sci 10:141–157

    Article  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sandre O, Browaeys J, Perzynski R, Bacri JC, Cabuil V, Rosensweig RE (1999) Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag. Phys Rev E 59:1736–1746

    Article  Google Scholar 

  • Tatulchenkov A, Cebers A (2005) Complex bubble dynamics in a vertical Hele-Shaw cell. Phys Fluids 17:107103

    Article  MathSciNet  MATH  Google Scholar 

  • Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253–257

    Article  Google Scholar 

  • Torres-Diaz I, Rinaldi C (2014) Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10:8584–8602

    Article  Google Scholar 

  • Tsebers AO (1975) Interfacial stresses in the hydrodynamics of liquids with internal rotation. Magnetohydrodynamics 11:63–66

    Google Scholar 

  • Tsebers A, Blūms E (1988) Long-range magnetic forces in two-dimensional hydrodynamics of magnetic fluid pattern formation. Chem Eng Commun 67:69–88

    Article  Google Scholar 

  • Tsebers AO, Maiorov MM (1980) Magnetostatic instabilities in plane layers of magnetizable liquids. Magnetohydrodynamics 16:21–27

    MATH  Google Scholar 

  • Wen CY, Lin JZ, Chen MY, Chen LQ, Liang TK (2011) Effects of sweep rates of external magnetic fields on the labyrinthine instabilities of miscible magnetic fluids. J Magn Magn Mater 323:1258–1262

    Article  Google Scholar 

  • Yu W, Bousmina M, Zhou C (2004) Determination of interfacial tension by the retraction method of highly deformed drop. Rheol Acta 43:342–349

    Article  Google Scholar 

  • Zakinyan A, Dikansky Y (2011) Drops deformation and magnetic permeability of a ferrofluid emulsion. Colloids Surf A 380:314–318

    Article  Google Scholar 

  • Zakinyan AR, Dikansky YI (2017) Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion. J Magn Magn Mater 431:103–106

    Article  Google Scholar 

  • Zakinyan A, Tkacheva E, Dikansky Y (2012) Dynamics of a dielectric droplet suspended in a magnetic fluid in electric and magnetic fields. J Electrostat 70:225–232

    Article  Google Scholar 

  • Zhu GP, Nguyen NT, Ramanujan RV, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27:14834–14841

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of the President of the Russian Federation (No. MK-5801.2015.1) and also by the Ministry of Education and Science of the Russian Federation in the framework of the base part of the governmental ordering for scientific research works (Project 3.5822.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Zakinyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1

The instability and breakup of ferrofluid microdrop (left image) and nonmagnetic microdrop immersed in ferrofluid (right image) under the instantaneously applied perpendicular magnetic field of the strength 7.3 kA/m for ferrofluid microdrop and of the strength 9.5 kA/m for nonmagnetic microdrop (MPG 2002 kb)

Video 2

Shapes evolution of ferrofluid microdrops submitted to a counterclockwise magnetic field (H r = 5.5 kA/m) rotating in the plane of observation in the presence of a gradually rising perpendicular magnetic field (H n). Left image: the rotating field frequency f = 10 Hz. Right image: slow motion (speed reduced by a factor of two), f = 70 Hz (MPG 5602 kb)

Video 3

Instability development of nonmagnetic microdrops immersed in a ferrofluid layer and submitted to a counterclockwise magnetic field rotating in the plane of observation in the presence of a gradually rising perpendicular magnetic field. Left image: f = 70 Hz, H r = 5.5 kA/m, the perpendicular field (H n) rises up to 4 kA/m. Right image: large nonmagnetic drop at f = 10 Hz, H r = 2.3 kA/m, the perpendicular field (H n) rises up to 2.1 kA/m (MPG 1988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakinyan, A., Beketova, E. & Dikansky, Y. Flows and instabilities of ferrofluids at the microscale. Microfluid Nanofluid 21, 88 (2017). https://doi.org/10.1007/s10404-017-1924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1924-5

Keywords

Navigation