Skip to main content

Advertisement

Log in

Manipulating electrokinetic conductance of nanofluidic channel by varying inlet pH of solution

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The electrokinetic conductivity of micro-/nanofluidic systems, which strongly depends on the local solution properties (e.g., pH and ionic strength), has wide applications in nanosystems to control the system performance and ion rectification. Accurate and active manipulation of this parameter is proven to be very challenging since, in nanoscale, the ion transport is particularly dominated by the acquired surface charge on the solid–liquid interfaces. In this study, we propose an approach to manipulate the nanochannel electrokinetic conductivity by changing the pH value of the solution at the inlet in order to impose asymmetrical conditions inside nanochannel. The variable surface charge of walls is determined by considering the chemical adsorption on the solid–liquid interface and the electrical double layer interaction. The presented numerical model, which couples Poisson–Nernst–Planck and Navier–Stokes equations, can fully consider the electro-chemo-mechanical transport phenomena and predict the electrokinetic conductivity of nanofluidic channels with good accuracy. Modeling results show that the electrokinetic conductivity of the nanofluidic systems can be regulated by varying the solution pH at the inlet. It is revealed that the stronger electric double layers interaction can enhance the sensitivity of the nanochannel electrokinetic conductance to the inlet pH. This unique behavior of the nanochannel electrokinetic conductivity could broaden potential applications in biomedical, energy, and environmental systems using nanofluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ETL:

Electrical triple layer

METL:

Modified electrical triple layer, EDL, electrical double layer

SCF:

Streaming conductance factor

ECF:

Electrical conductance factor

References

  • Alizadeh A, Zhang L, Wang M (2014) Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls. J Colloid Interface Sci 431:50–63

    Article  Google Scholar 

  • Baldessari F, Santiago JG (2009) Electrokinetics in nanochannels. Part I. Electric double layer overlap and channel-to-well equilibrium (vol 325, pg 526, 2008). J Colloid Interface Sci 331:549

    Article  Google Scholar 

  • Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721

    Article  Google Scholar 

  • Charmas R, Piasecki W, Rudzinski W (1995) 4-Layer complexation model for ion adsorption at electrolyte/oxide interface—theoretical foundations. Langmuir 11:3199–3210

    Article  Google Scholar 

  • Chen Y, Wang XH, Erramilli S, Mohanty P, Kalinowski A (2006) Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl Phys Lett 89:2392828

    Google Scholar 

  • Cheng LJ, Guo LJ (2007) Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett 7:3165–3171

    Article  Google Scholar 

  • Daiguji H, Yang PD, Szeri AJ, Majumdar A (2004a) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315–2321

    Article  Google Scholar 

  • Daiguji H, Yang PD, Majumdar A (2004b) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Guan WH, Fan R, Reed MA (2011) Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2:8

    Article  Google Scholar 

  • Hou X, Yang F, Li L, Song YL, Jiang L, Zhu DB (2010) A biomimetic asymmetric responsive single nanochannel. J Am Chem Soc 132:11736–11742

    Article  Google Scholar 

  • Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  Google Scholar 

  • Jiang ZJ, Stein D (2010) Electrofluidic gating of a chemically reactive surface. Langmuir 26:8161–8173

    Article  Google Scholar 

  • Jiang ZJ, Stein D (2011) Charge regulation in nanopore ionic field-effect transistors. Phys Rev E 83:031203

    Article  Google Scholar 

  • Karnik R, Castelino K, Fan R, Yang P, Majumdar A (2005a) Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett 5:1638–1642

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li DY, Yang PD, Majumdar A (2005b) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551

    Article  Google Scholar 

  • Kitamura A, Fujiwara K, Yamamoto T, Nishikawa S, Moriyama H (1999) Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model. J Nucl Sci Technol 36:1167–1175

    Article  Google Scholar 

  • Lanju M, Li-Hsien Y, Shizhi Q (2015) Buffer effect on the ionic conductance in a pH-regulated nanochannel. Electrochem Commun 51:129–132

    Article  Google Scholar 

  • Li W, Bell NAW, Hernandez-Ainsa S, Thacker VV, Thackray AM, Bujdoso R, Keyser UF (2013) Single protein molecule detection by glass nanopores. ACS Nano 7:4129–4134

    Article  Google Scholar 

  • Lichtner PC (1995) Principles and practice of reactive transport modeling. In: Scientific basis for nuclear waste management XVII. Symposium, vol 111, pp 117–130

  • Li-Hsien Y, Yu M, Song X, Shizhi Q (2015) Gate manipulation of ionic conductance in a nanochannel with overlapped electric double layers. Sens Actuators B Chem 215:266–271

    Article  Google Scholar 

  • Ma Y, Xue S, Hsu SC, Yeh LH, Qian SZ, Tan HP (2014) Programmable ionic conductance in a pH-regulated gated nanochannel. Phys Chem Chem Phys 16:20138–20146

    Article  Google Scholar 

  • Ma Y, Yeh LH, Lin CY, Mei LJ, Qian SZ (2015) pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. Anal Chem 87:4508–4514

    Article  Google Scholar 

  • Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  Google Scholar 

  • Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles, 1st edn. Research Studies Press, UK

    Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77:6772–6781

    Article  Google Scholar 

  • Qiao R, Aluru NR (2004) Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys Rev Lett 92:198301

    Article  Google Scholar 

  • Samson E, Marchand J, Snyder KA (2003) Calculation of ionic diffusion coefficients on the basis of migration test results. Mater Struct 36:156–165

    Article  Google Scholar 

  • Schoch RB, Renaud P (2005) Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 86:253111

    Article  Google Scholar 

  • Siwy Z, Gu Y, Spohr HA, Baur D, Wolf-Reber A, Spohr R, Apel P, Korchev YE (2002) Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys Lett 60:349–355

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, London

    Google Scholar 

  • Taghipoor M, Bertsch A, Renaud P (2015a) An improved model for predicting electrical conductance in nanochannels. Phys Chem Chem Phys 17:4160–4167

    Article  Google Scholar 

  • Taghipoor M, Bertsch A, Renaud P (2015b) Temperature sensitivity of nanochannel electrical conductance. ACS Nano 9:4563–4571

    Article  Google Scholar 

  • Thompson AP (2003) Nonequilibrium molecular dynamics simulation of electro-osmotic flow in a charged nanopore. J Chem Phys 119:7503–7511

    Article  Google Scholar 

  • van der Heyden FHJ, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95:116104

    Article  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6:2232–2237

    Article  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022–1025

    Article  Google Scholar 

  • Wang M, Chen S (2007) Electroosmosis in homogeneously charged micro- and nanoscale random porous media. J Colloid Interface Sci 314:264–273

    Article  Google Scholar 

  • Wang M, Kang Q (2010a) Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluid Nanofluid 9:181–190

    Article  Google Scholar 

  • Wang M, Kang Q (2010b) Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J Comput Phys 229:728–744

    Article  MATH  MathSciNet  Google Scholar 

  • Wang M, Revil A (2010) Electrochemical charge of silica surfaces at high ionic strength in narrow channels. J Colloid Interface Sci 343:381–386

    Article  Google Scholar 

  • Wang JK, Wang M, Li ZX (2006) Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J Colloid Interface Sci 296:729–736

    Article  Google Scholar 

  • Wang M, Liu J, Chen S (2007) Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Mol Simul 33:1273–1277

    Google Scholar 

  • Wang L, Guo W, Xie YB, Wang XW, Xue JM, Wang YG (2009) Nanofluidic diode generated by pH gradient inside track-etched conical nanopore. Radiat Meas 44:1119–1122

    Article  Google Scholar 

  • Wang M, Kang Q, Ben-Naim E (2010) Modeling of electrokinetic transport in silica nanofluidic channels. Anal Chim Acta 664:158–164

    Article  Google Scholar 

  • Yan Y, Sheng Q, Wang C, Xue J, Chang H-C (2013) Energy conversion efficiency of nanofluidic batteries: hydrodynamic slip and access resistance. J Phys Chem C 117:8050–8061

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Joo SW, Qian S, Hsu J-P (2012) Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes. Anal Chem 84:9615–9622

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the NSF grant of China (Nos. 51676107, 51176089), National Science and Technology Major Project on Oil and Gas (No. 2017ZX05013001) and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moran Wang.

Additional information

This article is part of the topical collection “2016 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Dalian, China” guest edited by Chun Yang, Carolyn Ren and Xiangchun Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Warkiani, M.E. & Wang, M. Manipulating electrokinetic conductance of nanofluidic channel by varying inlet pH of solution. Microfluid Nanofluid 21, 52 (2017). https://doi.org/10.1007/s10404-017-1892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1892-9

Keywords

Navigation