Skip to main content
Log in

An individual addressable and latchable actuator array for microfluidic systems

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microfluidic systems and applications are becoming more and more complex and therefore require a lot of individually addressable actuators and valves to guide the fluids inside the systems. In this paper, we present an actuator array based on a latchable phase change actuator, i.e. the solid/liquid phase change of the actuator medium is used to stabilize the two states of the actuator. The design of the actuator allows the individual control of a high number of actuators with only two external pressure lines. This is in contrast to conventional pressure-actuated membrane valves manufactured in soft elastomers such as PDMS (polydimethylsiloxane) which require increasing numbers of external pressure lines for a higher number of valves. First, we describe the general working principle of the actuator. The scalability of the actuator concept as well as the individual addressing is then demonstrated by means of two exemplary set-ups with four and twelve actuators. With the latter, we also show the suitability as a microvalve. We further characterized and optimized the response times of the actuator with respect to the heating power, the choice of the phase change medium as well as the volume of the actuator material used. We achieved switching times between the two stable states of the actuators in the range of 10 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • 3 M (2010) Fluorinert electronic liquid FC-40. Multimedia.3 m.com, 4

  • Grover WH, Ivester RHC et al (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6(5):623–631

    Article  Google Scholar 

  • Kaigala GV, Hoang VN et al (2008) Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis. Lab Chip 8(7):1071–1078

    Article  Google Scholar 

  • Liu Y, Rauch CB et al (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74(13):3063–3070

    Article  Google Scholar 

  • Mosadegh B, Bersano-Begey T et al (2011) Next-generation integrated microfluidic circuits. Lab Chip 11(17):2813–2818

    Article  Google Scholar 

  • Neumann C, Voigt A et al (2013) Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14(1–2):177–186

    Article  Google Scholar 

  • Ogden SL, Klintberg et al (2013) Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluid :1–19

  • Ogden S, Jonsson J et al (2012) A latchable high-pressure thermohydraulic valve actuator. Sens Actuators A: Phys 188:292–297

    Article  Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39

    Article  Google Scholar 

  • Rapp BE, Voigt A et al (2012) Deposition of ultrathin parylene C films in the range of 18 to 142 nm: controlling the layer thickness and assessing the closeness of the deposited films. Thin Solid Films 520(15):4884–4888

    Article  Google Scholar 

  • Richter A, Kuckling D et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753

    Article  Google Scholar 

  • Sethu P, Mastrangelo C (2003) Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens Actuators A: Phys 104(3):283–289

    Article  Google Scholar 

  • Shaikh KA, Li SF et al (2008) Development of a latchable microvalve employing a low-melting-temperature metal alloy. J Microelectromech Syst 17(5):1195–1203

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ et al (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  Google Scholar 

  • Unger MA, Chou HP et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  Google Scholar 

  • Vyawahare S, Griffiths AD et al (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17(10):1052–1065

    Article  Google Scholar 

  • Wilhelm E, Deshpande K et al (2015) Polysiloxane layers created by sol–gel and photochemistry: ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane. Lab Chip 15(7):1772–1782

    Article  Google Scholar 

  • Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG), research Grant NE 1901/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian E. Rapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, C., Sachsenheimer, K., Keller, N. et al. An individual addressable and latchable actuator array for microfluidic systems. Microfluid Nanofluid 20, 130 (2016). https://doi.org/10.1007/s10404-016-1793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1793-3

Keywords

Navigation