Skip to main content
Log in

Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The recent rise of high-pressure applications in microfluidics has led to the development of different types of pressure-resistant microfluidic chips. For the most part, however, the fabrication methods require clean room facilities, as well as specific equipment and expertise. Furthermore, the resulting microfluidic chips are not always well suited to flow visualization and optical measurements. Herein, we present a method that allows rapid and inexpensive prototyping of optically transparent microfluidic chips that resist pressures of at least 200 bar. The fabrication method is based on UV-curable off-stoichiometry thiol-ene epoxy (OSTE+) polymer, which is chemically bonded to glass. The reliability of the device was verified by pressure tests using CO2, showing resistance without failure up to at least 200 bar at ambient temperature. The microchips also resisted operation at high pressure for several hours at a temperature of 40 °C. These results show that the polymer structure and the chemical bond with the glass are not affected by high-pressure CO2. Opportunities for flow visualization are illustrated by high-pressure two-phase flow shadowgraphy experiments. These microfluidic chips are of specific interest for use with supercritical CO2 and for optical characterization of phase transitions and multiphase flow under near-critical and critical CO2 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abadie T, Aubin J, Legendre D, Xuereb C (2012) Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels. Microfluid. Nanofluidics 12:355–369. doi:10.1007/s10404-011-0880-8

    Article  Google Scholar 

  • Bartolo D, Degré G, Nghe P, Studer V (2008) Microfluidic stickers. Lab Chip 8:274–279

    Article  Google Scholar 

  • Benito-Lopez F, Verboom W, Kakuta M, Gardeniers JGE, Egberink RJM, Oosterbroek ER, van den Berg A, Reinhoudt DN (2005) Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor. Chem Commun. doi:10.1039/b500429b

    Google Scholar 

  • Benito-Lopez F, Tiggelaar RM, Salbut K, Huskens J, Egberink RJM, Reinhoudt DN, Gardeniers HJGE, Verboom W (2007) Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor. Lab Chip 7:1345. doi:10.1039/b703394j

    Article  Google Scholar 

  • Benito-López F, Egberink RJM, Reinhoudt DN, Verboom W (2008) High pressure in organic chemistry on the way to miniaturization. Tetrahedron 64:10023–10040. doi:10.1016/j.tet.2008.07.108

    Article  Google Scholar 

  • Blanch-Ojea R, Tiggelaar RM, Pallares J, Grau FX, Gardeniers JGE (2012) Flow of CO2–ethanol and of CO2–methanol in a non-adiabatic microfluidic T-junction at high pressures. Microfluid. Nanofluidics 12:927–940. doi:10.1007/s10404-011-0927-x

    Article  Google Scholar 

  • Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11:3136. doi:10.1039/c1lc20388f

    Article  Google Scholar 

  • Dorobantu Bodoc M, Prat L, Xuereb C, Gourdon C, Lasuye T (2012) Online monitoring of vinyl chloride polymerization in a microreactor using Raman spectroscopy. Chem Eng Technol 35:705–712. doi:10.1002/ceat.201100564

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437. doi:10.1039/b510841a

    Article  Google Scholar 

  • Gothsch T, Schilcher C, Richter C, Beinert S, Dietzel A, Büttgenbach S, Kwade A (2015) High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid. Nanofluidics 18:121–130. doi:10.1007/s10404-014-1419-6

    Article  Google Scholar 

  • Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid. Nanofluidics 8:799–812. doi:10.1007/s10404-009-0513-7

    Article  Google Scholar 

  • Haraldsson T, Carlborg CF, van der Wijngaart W (2014) OSTE: a novel polymer system developed for Lab-on-Chip. In: SPIE MOEMS-MEMS. International society for optics and photonics, pp 897608–897608

  • Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering: fundamentals, modelling and reactions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Keybl J, Jensen KF (2011) Microreactor system for high-pressure continuous flow homogeneous catalysis measurements. Ind Eng Chem Res 50:11013–11022. doi:10.1021/ie200936b

    Article  Google Scholar 

  • King C, Walsh E, Grimes R (2007) PIV measurements of flow within plugs in a microchannel. Microfluid. Nanofluidics 3:463–472. doi:10.1007/s10404-006-0139-y

    Article  Google Scholar 

  • Kobayashi J, Mori Y, Kobayashi S (2005) Hydrogenation reactions using scCO2 as a solvent in microchannel reactors. Chem Commun. doi:10.1039/b501169h

    Google Scholar 

  • Luther SK, Braeuer A (2012) High-pressure microfluidics for the investigation into multi-phase systems using the supercritical fluid extraction of emulsions (SFEE). J Supercrit Fluids 65:78–86. doi:10.1016/j.supflu.2012.02.029

    Article  Google Scholar 

  • Macedo Portela da Silva N, Letourneau J-J, Espitalier F, Prat L (2014) Transparent and inexpensive microfluidic device for two-phase flow systems with high-pressure performance. Chem Eng Technol 37:1929–1937. doi:10.1002/ceat.201400028

    Article  Google Scholar 

  • Marre S, Aymonier C, Subra P, Mignard E (2009) Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows. Appl Phys Lett 95:134105. doi:10.1063/1.3242375

    Article  Google Scholar 

  • Marre S, Adamo A, Basak S, Aymonier C, Jensen KF (2010) Design and packaging of microreactors for high pressure and high temperature applications. Ind Eng Chem Res 49:11310–11320. doi:10.1021/ie101346u

    Article  Google Scholar 

  • Marre S, Roig Y, Aymonier C (2012) Supercritical microfluidics: opportunities in flow-through chemistry and materials science. J Supercrit Fluids 66:251–264. doi:10.1016/j.supflu.2011.11.029

    Article  Google Scholar 

  • Murphy ER, Inoue T, Sahoo HR, Zaborenko N, Jensen KF (2007) Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices. Lab Chip 7:1309. doi:10.1039/b704804a

    Article  Google Scholar 

  • Ogden S, Bodén R, Do-Quang M, Wu ZG, Amberg G, Hjort K (2014) Fluid behavior of supercritical carbon dioxide with water in a double-Y-channel microfluidic chip. Nanofluidics, Microfluid. doi:10.1007/s10404-014-1399-6

    Google Scholar 

  • Pinho B, Girardon S, Bazer-Bachi F, Bergeot G, Marre S, Aymonier C (2014) A microfluidic approach for investigating multicomponent system thermodynamics at high pressures and temperatures. Lab Chip 14:3843. doi:10.1039/C4LC00505H

    Article  Google Scholar 

  • Razzaq T, Glasnov TN, Kappe CO (2009) Continuous-flow microreactor chemistry under high-temperature/pressure conditions. Eur J Org Chem 2009:1321–1325. doi:10.1002/ejoc.200900077

    Article  Google Scholar 

  • Saharil F, Carlborg CF, Haraldsson T, van der Wijngaart W (2012) Biocompatible “click” wafer bonding for microfluidic devices. Lab Chip 12:3032. doi:10.1039/c2lc21098c

    Article  Google Scholar 

  • Saharil F, Forsberg F, Liu Y, Bettotti P, Kumar N, Niklaus F, Haraldsson T, van der Wijngaart W, Gylfason KB (2013) Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE(+) dual-cure polymer. J. Micromechanics Microengineering 23:025021

    Article  Google Scholar 

  • Sandström N, Shafagh RZ, Vastesson A, Carlborg CF, van der Wijngaart W, Haraldsson T (2015) Reaction injection molding and direct covalent bonding of OSTE+ polymer microfluidic devices. J. Micromechanics Microengineering 25:075002. doi:10.1088/0960-1317/25/7/075002

    Article  Google Scholar 

  • Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752. doi:10.1039/c1lc20514e

    Article  Google Scholar 

  • Tiggelaar RM, Benito-López F, Hermes DC, Rathgen H, Egberink RJM, Mugele FG, Reinhoudt DN, van den Berg A, Verboom W, Gardeniers HJGE (2007) Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chem Eng J 131:163–170. doi:10.1016/j.cej.2006.12.036

    Article  Google Scholar 

  • Trachsel F, Hutter C, Vonrohr P (2008) Transparent silicon/glass microreactor for high-pressure and high-temperature reactions. Chem Eng J 135:S309–S316. doi:10.1016/j.cej.2007.07.049

    Article  Google Scholar 

  • Verboom W (2009) Selected examples of high-pressure reactions in glass microreactors. Chem Eng Technol 32:1695–1701. doi:10.1002/ceat.200900369

    Article  Google Scholar 

  • Wang X, Liu G, Wang K, Luo G (2015) Measurement of internal flow field during droplet formation process accompanied with mass transfer. Microfluid. Nanofluidics 19:757–766. doi:10.1007/s10404-015-1600-6

    Article  Google Scholar 

  • www.ostemers.com/wp-content/uploads/2014/07/Product-sheet-OSTEMER™-322-Crystal-Clear1.pdf

  • Zaloha P, Kristal J, Jiricny V, Völkel N, Xuereb C, Aubin J (2012) Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels. Chem Eng Sci 68:640–649. doi:10.1016/j.ces.2011.10.036

    Article  Google Scholar 

  • Zhao Y, Chen G, Ye C, Yuan Q (2013) Gas–liquid two-phase flow in microchannel at elevated pressure. Chem Eng Sci 87:122–132. doi:10.1016/j.ces.2012.10.011

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tommy Haraldsson and Un Weiyang from Mercene Lab for providing materials and advice on the fabrication process. They would also like to thank L. Prat from The University of Toulouse for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Aubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A., Teychené, S., Camy, S. et al. Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips. Microfluid Nanofluid 20, 92 (2016). https://doi.org/10.1007/s10404-016-1757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1757-7

Keywords

Navigation