Skip to main content
Log in

AC electroosmotic microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An AC electroosmotic (AC-EO) microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode is proposed in this study. The electrode pair of the AC-EO microconcentrator is composed of a larger top electrode (30 mm × 60 mm) and a bottom electrode (containing three slim electrodes and a triangular electrode). In the expanded section at the connection of a slim electrode and the triangular electrode, an electroosmosis flow transports test samples far away from the triangular electrode to the stagnation zone inside the triangular electrode through the slim electrode for concentration. On the three sides of the triangular electrode, vortices bring test samples surrounding the triangular electrode to the stagnation zone. By these two electroosmosis flow fields, the microconcentrator can concentrate test samples near and far from the triangular electrode to its central area, achieving a highly efficient sample concentration. The measured concentration distribution in the vertical electrode direction by confocal microscopy indicates that the concentration process occurs above the electrode surface. The capability of the proposed AC-EO concentrator in the repeated concentration and release of test samples is verified by a reversible switch test. The performance of the proposed AC-EO concentrator in concentrating latex particles and T4 GT7 DNA is better than those reported in the literature under similar average electric field strength. The fluorescence enhancement factor is 3.9–9.1 times better when concentrating latex particles, and the concentration enhance factor is 1.4–5.7 times better when concentrating T4 GT7 DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bashir M, Mahara JB, Torkos K (1998) Liquid–liquid extraction for sample preparation prior to gas chromatography and gas chromatography–mass spectrometry determination of herbicide and pesticide compounds. Microchem J 58:31–38

    Article  Google Scholar 

  • Bown MR, Meinhart CD (2006) AC electroosmotic flow in a DNA concentrator. Microfluid Nanofluid 2:513–523

    Article  Google Scholar 

  • Broyles BS, Jacobson SC, Ramsey JM (2003) Sample filtration, concentration, and separation integrated on microfluidic devices. Anal Chem 75:2761–2767

    Article  Google Scholar 

  • Chen DF, Du HJ (2010) A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis. Microfluid Nanofluid 9:281–291. doi:10.1007/s10404-009-0545-z

    Article  MathSciNet  Google Scholar 

  • Chen DF, Du HJ, Tay CY (2010a) Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields. Nanoscale Res Lett 5:55–60. doi:10.1007/s11671-009-9442-3

    Article  Google Scholar 

  • Chen JL, Shih WH, Hsieh WH (2010b) Three-dimensional non-linear AC electro-osmotic flow induced by a face-to-face, asymmetric pair of planar electrodes. Microfluid Nanofluid 9:579–584. doi:10.1007/s10404-010-0582-7

    Article  Google Scholar 

  • Chiou PY, Ohta AT, Jamshidi A, Hsu HY, Wu MC (2008) Light-actuated ac electroosmosis for nanoparticle manipulation. J Microelectromech Syst 17:525–531

    Article  Google Scholar 

  • Cho YK, Kim S, Lee K, Park C, Lee JG, Ko C (2009) Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159. doi:10.1002/elps.200900179

    Article  Google Scholar 

  • Cho YK, Kim TH, Lee JG (2010) ) On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip. J Micromech Microeng. doi:10.1088/0960-1317/20/6/065010

    Google Scholar 

  • Cummings EB, Simmons BA, Davalos RV, McGraw GJ, Lapizco-Encinas BH, Fintschenko Y (2005) Fast and selective concentration of pathogens by insulator based dielectrophoresis. Abstr Pap Am Chem Soc 230:U404–U405

    Google Scholar 

  • Dimeric Cyanine Nucleic Acid Stains, Product Information. Molecular Probes. https://tools.thermofisher.com/content/sfs/manuals/mp03600.pdf

  • Du JR, Wei HH (2010) Focusing and trapping of DNA molecules by head-on ac electrokinetic streaming through join asymmetric polarization. Biomicrofluidics 4, 034108

    Article  Google Scholar 

  • Du JR, Juang YJ, Wu JT, Wei HH (2008) Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel. Biomicrofluidics 2, 044103

    Article  Google Scholar 

  • Gencoglu A, Olney D, LaLonde A, Koppula KS, Lapizco-Encinas BH (2014) Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Electrophoresis 35:362–373. doi:10.1002/elps.201300385

    Article  Google Scholar 

  • Ghubade A, Mandal S, Chaudhury R, Singh RK, Bhattacharya S (2009) Dielectrophoresis assisted concentration of micro-particles and their rapid quantitation based on optical means. Biomed Microdevices 11:987–995. doi:10.1007/s10544-009-9316-6

    Article  Google Scholar 

  • Giordano BC, Burgi DS, Hart SJ, Terray A (2012) On-line sample pre-concentration in microfluidic devices: a review. Anal Chim Acta 718:11–24

    Article  Google Scholar 

  • Gutzman Y, Carroll AD, Ruzicka J (2006) Bead injection for biomolecular assays: affinity chromatography enhanced by bead injection spectroscopy. Analyst 131:809–815

    Article  Google Scholar 

  • Hansang C, Lee LP (2006) A novel integrated microfluidic SERS-CD with high-throughput centrifugal cell trapping array for quantitative biomedicine. In: Society for chemistry and micro-nano systems, pp 5–9

  • Hayashi M, Yasuda K (2010) Simple microfluidic continuous concentration of microparticles with different dielectric constants using dielectrophoretic force in a V-shaped electrode array. Jpn J Appl Phys. doi:10.1143/Jjap.49.097002

    Google Scholar 

  • Hayashi M, Kaneko T, Yasuda K (2011) Continuous concentration and separation of microparticles using dielectrophoretic force in a V-shaped electrode array. Jpn J Appl Phys. doi:10.1143/Jjap.50.06gl03

    Google Scholar 

  • Henslee EA, Sano MB, Rojas AD, Schmelz EM, Davalos RV (2011) Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis 32:2523–2529. doi:10.1002/elps.201100081

    Article  Google Scholar 

  • Hoettges KF, McDonnell MB, Hughes MP (2014) Continuous flow nanoparticle concentration using alternating current-electroosmotic flow. Electrophoresis 35:467–473. doi:10.1002/elps.201300287

    Article  Google Scholar 

  • ImageJ home page. NIH, National Institutes of Health. http://rsbweb.nih.gov/ij/

  • Islam N, Lian M, Wu J (2007) Enhancing microcantilever capability with integrated AC electroosmotic trapping. Microfluid Nanofluid 3:369–375

    Article  Google Scholar 

  • Lagally ET, Lee SH, Soh HT (2005) Integrated microsystem for dielectrophoretic cell concentration and genetic detection. Lab Chip 5:1053–1058. doi:10.1039/B505915a

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004a) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579. doi:10.1021/Ac034804j

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004b) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704. doi:10.1002/elps.200405899

    Article  Google Scholar 

  • Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Methods 62:317–326. doi:10.1016/j.mimet.2005.04.027

    Article  Google Scholar 

  • Lei KF, Cheng H, Choy KY, Chow LMC (2009) Electrokinetic DNA concentration in microsystems. Sensor Actuat A Phys 156:381–387

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C, Lam YC (2012) Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field. Microfluid Nanofluid 12:723–733. doi:10.1007/s10404-011-0919-x

    Article  Google Scholar 

  • Li M, Li SB, Cao WB, Li WH, Wen WJ, Alici G (2013a) Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluid Nanofluid 14:527–539. doi:10.1007/s10404-012-1071-y

    Article  Google Scholar 

  • Li SB, Li M, Bougot-Robin K, Cao WB, Chau IYY, Li WH, Wen WJ (2013b) High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip. Biomicrofluidics. doi:10.1063/1.4795856

    Google Scholar 

  • Martinez-Lopez JI, Moncada-Hernandez H, Baylon-Cardiel JL, Martinez-Chapa SO, Rito-Palomares M, Lapizco-Encinas BH (2009) Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bioanal Chem 394:293–302. doi:10.1007/s00216-009-2626-y

    Article  Google Scholar 

  • Maruyama H, Kotani K, Masuda T, Honda A, Takahata T, Arai F (2011) Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluid 10:1109–1117. doi:10.1007/s10404-010-0739-4

    Article  Google Scholar 

  • Moncada-Hernandez H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396:1805–1816. doi:10.1007/s00216-009-3422-4

    Article  Google Scholar 

  • Motosuke M, Yamasaki K, Ishida A, Toki H, Honami S (2013) Improved particle concentration by cascade AC electroosmotic flow. Microfluid Nanofluid 14:1021–1030. doi:10.1007/s10404-012-1109-1

    Article  Google Scholar 

  • Park S, Zhang Y, Wang TH, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11:2893–2900. doi:10.1039/C1lc20307j

    Article  Google Scholar 

  • Puttaswamy SV, Lin CH, Sivashankar S, Yang YS, Liu CH (2013) Electrodeless dielectrophoretic concentrator for analyte pre-concentration on poly-silicon nanowire field effect transistor. Sensor Actuat B Chem 178:547–554. doi:10.1016/j.snb.2013.01.016

    Article  Google Scholar 

  • Shihabi Z (2006) Review: sample concentration based on inclusion of organic solvents in capillary zone electrophoresis. Curr Pharm Anal 2:9–15. doi:10.2174/157341206775474025

    Article  Google Scholar 

  • Sin MLY, Gau V, Liao JC, Haake DA, Wong PK (2009) Active manipulation of quantum dots using AC electrokinetics. J Phys Chem C 113:6561–6565

    Article  Google Scholar 

  • Wu JT, Du JR, Juang YJ, Wei HH (2007) Rectified elongational streaming due to asymmetric electro-osmosis induced by ac polarization. Appl Phys Lett 90, 134103

    Article  Google Scholar 

  • Xu Y, Cao Q, Zeng X, Wu YJ, Zhang WP (2009) Research of cell concentration and separation on the dielectrophoretic chip with arrayed opposite electrodes. Chem J Chin Univ 30:876–881

    Google Scholar 

  • Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H (2004) Direct observation of long-strand DNA conformational changing in microchannel flow and microfluidic hybridization assay. Anal Biochem 332:274–279. doi:10.1016/j.ab.2004.05.040

    Article  Google Scholar 

  • Yang LJ, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M, Bashir R (2006) A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip 6:896–905. doi:10.1039/B607061m

    Article  Google Scholar 

  • Yeo WH, Chung JH, Liu YL, Lee KH (2009) Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. J Phys Chem B 113:10849–10858. doi:10.1021/Jp900618t

    Article  Google Scholar 

  • Yeo WH et al (2012) Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip. Nanotechnology. doi:10.1088/0957-4484/23/48/485707

    Google Scholar 

  • Yeo WH, Lee HB, Kim JH, Lee KH, Chung JH (2013) Nanotip analysis for dielectrophoretic concentration of nanosized viral particles. Nanotechnology 24:1855. doi:10.1088/0957-4484/24/18/185502

    Article  Google Scholar 

  • Yokokawa R, Manta Y, Namura M, Takizawa Y, Le NCH, Sugiyama S (2010) Individual evaluation of DEP, EP and AC-EOF effects on lambda DNA molecules in a DNA concentrator. Sensor Actuat B Chem 143:769–775

    Article  Google Scholar 

  • Zambonin CG, Losito I, Cilenti A, Palmisano F (2002) Solid-phase microextraction coupled to gas chromatography-mass spectrometry for the study of soil adsorption coefficients of organophosphorus pesticides. J Environ Monitor 4:477–481

    Article  Google Scholar 

  • Zhang W, Cao CX (2005) A review on stacking of analytes in high salt sample in capillary electrophoresis. Chin J Anal Chem 33:267–271

    Google Scholar 

  • Zhao YJ, Yi UC, Cho SK (2007) Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics. J Microelectromech Syst 16:1472–1481. doi:10.1109/Jmems.2007.906763

    Article  Google Scholar 

  • Zhou RH, Wang P, Chang HC (2006) Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis 27:1376–1385. doi:10.1002/elps.200500329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hsin Hsieh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Lee, YC. & Hsieh, WH. AC electroosmotic microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode. Microfluid Nanofluid 20, 72 (2016). https://doi.org/10.1007/s10404-016-1736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1736-z

Keywords

Navigation