Skip to main content
Log in

Magnetically controllable generation of ferrofluid droplets

  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper reports the manipulation of ferrofluid droplets by using a microfluidic flow-focusing device equipped with a magnetic tweezer. Besides the traditional flow rate controlling method, the magnetic field also can be applied to control the size of the droplets. Two major effects in magnetic manipulation process: magnetoviscous effect and magnetic drag effect, were studied. Under a fixed flow rate (CP = 1 mL/h, DP = 0.2 mL/h), the average sizes of ferrofluid droplets were tunable from 135 to 95 μm by varying the magnetic field from 0 to 60 mT. Moreover, square wave magnetic field can be used to periodically generate droplets with different sizes. These results are helpful to understand the generation mechanism of the ferrofluid droplet and supply a novel method for manipulating droplets with a predetermined size and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364

    Article  Google Scholar 

  • Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302

    Article  Google Scholar 

  • Diguet A, Guillermic RM, Magome N, Saint-Jalmes A, Chen Y, Yoshikawa K, Baigl D (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed Engl 48:9281–9284

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

    Article  Google Scholar 

  • Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  Google Scholar 

  • Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463

    Article  Google Scholar 

  • Jeong WJ, Kim JY, Choo J, Lee EK, Han CS, Beebe DJ, Seong GH, Lee SH (2005) Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21:3738–3741

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560

    Article  Google Scholar 

  • Liu J, Yap YF, Nguyen N-T (2011) Numerical study of the formation process of ferrofluid droplets. Phys Fluids (1994–present) 23:072008

    Article  Google Scholar 

  • Nguyen N-T (2011) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Nguyen N-T, Ting T-H, Yap Y-F, Wong T-N, Chai JC-K, Ong W-L, Zhou J, Tan S-H, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102

    Article  Google Scholar 

  • Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–9412

    Article  Google Scholar 

  • Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5:585–594

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  Google Scholar 

  • Pipper J, Inoue M, Ng LF, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263

    Article  Google Scholar 

  • Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106

    Article  Google Scholar 

  • Rich JP, Lammerding J, McKinley GH, Doyle PS (2011) Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7:9933

    Article  Google Scholar 

  • Ruuge E, Rusetski A (1993) Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. J Magn Magn Mater 122:335–339

    Article  Google Scholar 

  • Schmid L, Franke T (2013) SAW-controlled drop size for flow focusing. Lab Chip 13:1691–1694

    Article  Google Scholar 

  • Shui L, van den Berg A, Eijkel JCT (2009) Capillary instability, squeezing, and shearing in head-on microfluidic devices. J Appl Phys 106:124305

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  • Tan S-H, Nguyen N-T (2011) Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations. Phys Rev E 84:036317

    Article  Google Scholar 

  • Tan Y-C, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114:350–356

    Article  Google Scholar 

  • Tan S-H, Nguyen N-T, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20:045004

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Velev OD, Prevo BG, Bhatt KH (2003) On-chip manipulation of free droplets. Nature 426:515–516

    Article  Google Scholar 

  • Woodward A, Cosgrove T, Espidel J, Jenkins P, Shaw N (2007) Monodisperse emulsions from a microfluidic device, characterised by diffusion NMR. Soft Matter 3:627

    Article  Google Scholar 

  • Wu Y, Fu T, Ma Y, Li HZ (2013) Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter 9:9792

    Article  Google Scholar 

  • Xu J, Li S, Tan J, Wang Y, Luo G (2006) Preparation of highly monodisperse droplet in a T-junction microfluidic device. AlChE J 52:3005–3010

    Article  Google Scholar 

  • Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

    Article  Google Scholar 

  • Zhang K, Liang Q, Ma S, Mu X, Hu P, Wang Y, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9:2992–2999

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Collaborative Innovation Center of Suzhou Nano Science and Technology. Financial support from the National Natural Science Foundation of China (Grant No. 11125210), the National Basic Research Program of China (973 Program, Grant No.2012CB937500) and the Anhui Provincial Natural Science Foundation of China (1408085QA17) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 4153 kb)

Supplementary material 2 (WMV 2610 kb)

Supplementary material 3 (WMV 3570 kb)

Supplementary material 4 (WMV 2816 kb)

Supplementary material 5 (WMV 5499 kb)

Supplementary material 6 (WMV 8227 kb)

Supplementary material 7 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Xuan, S., Ruan, X. et al. Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluid 19, 1377–1384 (2015). https://doi.org/10.1007/s10404-015-1652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1652-7

Keywords

Navigation