Skip to main content
Log in

A numerical study on the performance of micro-vibrating flow pumps using the immersed boundary method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A micro-vibrating flow pump (micro-VFP) drives the fluid by the vibration of an elastic cantilever-like structure in the pump, which is actuated by a sinusoidal magnetic field. In the present study, we clarify the pumping mechanism of the micro-VFP through a numerical simulation. A two-dimensional simulation code based on the immersed boundary method was developed to obtain the flow field in the micro-VFP together with the vibration of the cantilever. The motion of the cantilever, which was imitated by the immersed body, was expressed as an external forcing term of the Navier–Stokes equations. Here, the magnetic force required to actuate the cantilever was calculated based on a two-dimensional magnetic model, and an integral approach was used to calculate the large deflection of the cantilever. The working conditions and length of the cantilever were numerically studied to determine their effects on the pumping performance. It was shown through the numerical simulations that the pumping mechanism could be explained as a result of elongation of the cantilever in the effective stroke induced by the actuating magnetic field. The pumping performance, which was characterized by the volumetric flow rate and the shut-off pressure, was enhanced by increasing the actuation frequency of the cantilever as has been found in previous experiments. It was also found that the cantilever has an optimum length to give the maximum flow rate. The mechanism was explained with respect to the kinetic energy transferred to the fluid by the vibrating cantilever and the choking level, which is determined by the clearance between the ceiling of the microchannel and the tip of the cantilever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abramchuk S, Kramarenko E, Stepanov G, Nikitin LV, Filipcsei G, Khokhlov AR, Zrínyi M (2007) Novel highly elastic magnetic materials for dampers and seals: part I. Preparation and characterization of the elastic materials. Polym Adv Technol 18(11):883–890. doi:10.1002/pat.924

    Article  Google Scholar 

  • Chen L (2010) An integral approach for large deflection cantilever beams. Int J Non-linear Mech 45(3):301–305. doi:10.1016/j.ijnonlinmec.2009.12.004

    Article  Google Scholar 

  • Choi H, Moin P (1994) Effects of the computational time step on numerical solutions of turbulent flow. J Comput Phys 113(1):1–4. doi:10.1006/jcph.1994.1112

    Article  MATH  Google Scholar 

  • Doi K, Ueda M, Kawano S (2011) Theoretical model of nanoparticle detection mechanism in microchannel with gating probe electrodes. J Comput Sci Technol 5(2):78–88. doi:10.1299/jcst.5.78

    Article  Google Scholar 

  • Dusenbery DB (2009) Living at micro scale: the unexpected physics of being small. Harvard University Press, Cambridge

    Google Scholar 

  • Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428–1434. doi:10.1021/nl070190c

    Article  Google Scholar 

  • Fahrni F, Prins MWJ, van Ijzendoorn LJ (2009) Micro-fluidic actuation using magnetic artificial cilia. Lab Chip 9(23):3413–3421. doi:10.1039/B908578E

    Article  Google Scholar 

  • Gauger EM, Downton MT, Stark H (2009) Fluid transport at low Reynolds number with magnetically actuated artificial cilia. Eur Phys J E 28(2):231–242. doi:10.1140/epje/i2008-10388-1

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids (1958–1988) 8(12):2182–2189. doi:10.1063/1.1761178

    Article  MATH  Google Scholar 

  • Hsieh Y-C, Zahn JD (2007) On-chip microdialysis system with flow-through sensing components. Biosens Bioelectron 22(11):2422–2428. doi:10.1016/j.bios.2006.08.044

    Article  Google Scholar 

  • Hussong J, Schorr N, Belardi J, Prucker O, Ruhe J, Westerweel J (2011) Experimental investigation of the flow induced by artificial cilia. Lab Chip 11(12):2017–2022. doi:10.1039/C0LC00722F

    Article  Google Scholar 

  • Kato T, Kawano S, Nakahashi K, Yambe T, S-i Nitta, Hashimoto H (2003) Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid. Artif Organs 27(1):41–48. doi:10.1046/j.1525-1594.2003.07191.x

    Article  Google Scholar 

  • Kawano S, Yamakami J, Kamijo K, Hashimoto H, Yambe T, S-i Nitta (2001) Computational design of vibration pumping device for artificial heart. J Press Vessel Technol 123(4):525–529. doi:10.1115/1.1388009

    Article  Google Scholar 

  • Kawano S, Isoyama T, Kobayashi S, Arai H, Takiura K, Saito I, Chinzei T, Abe Y, Yambe T, Nitta S, Imachi K, Hashimoto H (2003) Miniature vibrating flow blood pump using a cross-slider mechanism for external shunt catheter. Artif Organs 27(1):73–77. doi:10.1046/j.1525-1594.2003.07186.x

    Article  Google Scholar 

  • Khaderi SN, Craus CB, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Ruhe J, den Toonder JMJ, Onck PR (2011a) Magnetically-actuated artificial cilia for microfluidic propulsion. Lab Chip 11(12):2002–2010. doi:10.1039/C0LC00411A

    Article  Google Scholar 

  • Khaderi SN, den Toonder JMJ, Onck PR (2011b) Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis. J Fluid Mech 688:44–65. doi:10.1017/jfm.2011.355

    Article  MATH  Google Scholar 

  • Khaderi S, Hussong J, Westerweel J, Toonder Jd, Onck P (2013) Fluid propulsion using magnetically-actuated artificial cilia—experiments and simulations. RSC Adv 3(31):12735–12742. doi:10.1039/C3RA42068J

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1–6):244–248. doi:10.1016/0925-4005(90)80209-i

    Article  Google Scholar 

  • Osman O, Shintaku H, Kawano S (2012) Development of micro-vibrating flow pumps using MEMS technologies. Microfluid Nanofluidics 13(5):703–713. doi:10.1007/s10404-012-0988-5

    Article  Google Scholar 

  • Peng S, Zhang M, Niu X, Wen W, Sheng P, Liu Z, Shi J (2008) Magnetically responsive elastic microspheres. Appl Phys Lett 92(1):012108. doi:10.1063/1.2830620

    Article  Google Scholar 

  • Perkins T, Smith D, Larson R, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268(5207):83–87. doi:10.1126/science.7701345

    Article  Google Scholar 

  • Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252. doi:10.1016/0021-9991(77)90100-0

    Article  MathSciNet  MATH  Google Scholar 

  • Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H (2007) Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst Technol 13(8):951–958. doi:10.1007/s00542-006-0291-z

    Article  Google Scholar 

  • Shintaku H, Imamura S, Kawano S (2008) Microbubble formations in MEMS-fabricated rectangular channels: a high-speed observation. Exp Therm Fluid Sci 32(5):1132–1140. doi:10.1016/j.expthermflusci.2008.01.004

    Article  Google Scholar 

  • Toonder Jd, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol T, Reijme M, Talen W, Wilderbeek H, Khatavkar V, Anderson P (2008) Artificial cilia for active micro-fluidic mixing. Lab Chip 8(4):533–541. doi:10.1039/B717681C

    Article  Google Scholar 

  • Wu M-H, Huang S-B, Cui Z, Cui Z, Lee G-B (2008) Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sens Actuators B Chem 129(1):231–240. doi:10.1016/j.snb.2007.07.145

    Article  Google Scholar 

  • Yambe T, Kawano S, Nanka S-S, Kobayashi S-I, Tanaka A, Owada N, Yoshizawa M, Abe K-I, Tabayashi K, Takeda H, Hashimoto H, Nitta S-I (1999) Peripheral vascular resistances during total left heart bypass with an oscillated blood flow. Artif Organs 23(8):747–750. doi:10.1046/j.1525-1594.1999.06415.x

    Article  Google Scholar 

  • Yambe T, Yoshizawa M, Tanaka A, Abe K-I, Kawano S, Matsuki H, Maruyama S, Amae S, Wada N, Kamiyama T, Takagi T, Luo R, Hayashi J, Kovalev YA, Sha XD, Nanka S, Saijo Y, Mibiki Y, Shibata M-I, Nitta S-I (2003) Recent progress in artificial organ research at Tohoku University. Artif Organs 27(1):2–7. doi:10.1046/j.1525-1594.2003.07181.x

    Article  Google Scholar 

  • Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40. doi:10.1016/j.jcp.2005.10.035

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoyuki Kawano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, O.O., Shirai, A. & Kawano, S. A numerical study on the performance of micro-vibrating flow pumps using the immersed boundary method. Microfluid Nanofluid 19, 595–608 (2015). https://doi.org/10.1007/s10404-015-1586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1586-0

Keywords

Navigation