Skip to main content
Log in

Cell patterning using a dielectrophoretic–hydrodynamic trap

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The paper presents a dielectrophoretic method for cell patterning using dielectrophoretic–hydrodynamic trap. A distinctive characteristic of the device is that the dielectrophoretic (DEP) force is generated using a structure that combines conventional electrode-based DEP (eDEP) with insulator-based DEP method (iDEP). The conventional eDEP force is generated across the microfluidic channel between a top plate indium tin oxide electrode and a thin CrAu electrode. Meantime, an isolating cage built from SU8 photoresist around the thin electrode modifies the electric field generating an iDEP force. The cells that are flowing through a microfluidic channel are trapped in the SU8 cage by the total DEP force. As a result, according to the cell dimension and the thickness of the SU8 layer, different cell patterns can be achieved. If the cell’s size is sensitively smaller than the dimensions of the hydrodynamic trap, due to the dipole–dipole interaction, the cell can be organized in 3D structures. The trapping method can be used for conducting genetic, biochemical or physiological studies on cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht DR, Tsang VL, Sah RL, Bhatia SN (2005) Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5:111–118. doi:10.1039/b406953f

    Article  Google Scholar 

  • Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369–375

    Article  Google Scholar 

  • Albrecht DR, Underhill GH, Mendelson A, Bhatia SN (2007) Multiphase electropatterning of cells and biomaterials. Lab Chip 7:702–709

    Article  Google Scholar 

  • Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847

    Article  Google Scholar 

  • Bhadriraju K, Chen CS (2002) Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov Today 7:612–620

    Article  Google Scholar 

  • Bhatia S, Balis U, Yarmush M, Toner M (1999) Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900

    Google Scholar 

  • Birkbeck AL, Flynn RA, Ozkan M, Song D, Gross M, Esener SC (2003) VCSEL arrays as micromanipulators in chip-based biosystems. Biomed Microdevices 5:47–54

    Article  Google Scholar 

  • Čemažar J, Miklavčič D, Kotnik T (2013) Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields—a review. Informacije MIDEM 43:143–161

    Google Scholar 

  • Choi J-W, Rosset S, Niklaus M, Adleman JR, Shea H, Psaltis D (2010) 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation. Lab Chip 10:783–788

    Article  Google Scholar 

  • Choudhury D, Mo X, Iliescu C, Tan LL, Tong WH, Yu H (2011) Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. Biomicrofluidics 5:022203

    Article  Google Scholar 

  • Chow KS, Du H (2011) Dielectrophoretic characterization and trapping of different waterborne pathogen in continuous flow manner. Sens Actuators A 170:24–31

    Article  Google Scholar 

  • Cima I, Yee CW, Iliescu FS, Phyo WM, Lim KH, Iliescu C, Tan MH (2013) Label-free isolation of circulating tumor cells in microfluidic devices: current research and perspectives. Biomicrofluidics 7:011810

    Article  Google Scholar 

  • Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78:4925–4930

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  Google Scholar 

  • Flanagan LA, Lu J, Wang L, Marchenko SA, Jeon NL, Lee AP, Monuki ES (2008) Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells 26:656–665

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Higginbotham SN, Sweatman DR (2008) A combined travelling wave dielectrophoresis and impedance sensing device for sensing biological cell suspensions. J Phys D Appl Phys 41:175503

    Article  Google Scholar 

  • Ho C-T, Lin R-Z, Chang W-Y, Chang H-Y, Liu C-H (2006) Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 6:724–734

    Article  Google Scholar 

  • Hsiung L-C et al (2008) A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens Bioelectron 24:869–875

    Article  Google Scholar 

  • Huang Y, Williams JC, Johnson SM (2012) Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab Chip 12:2103–2117

    Article  Google Scholar 

  • Hwang H, Lee D-H, Choi W, Park J-K (2009) Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics 3:014103

    Article  Google Scholar 

  • Iliescu C, Xu GL, Samper V, Tay FE (2005) Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J Micromech Microeng 15:494–500

    Article  Google Scholar 

  • Iliescu C, Tay FE, Xu G, Yu LM, Samper V (2006a) A dielectrophoretic chip packaged at wafer level. Microsyst Technol 12:987–992

    Article  Google Scholar 

  • Iliescu C, Yu L, Xu G, Tay FE (2006b) A dielectrophoretic chip with a 3-D electric field gradient. J Microelectromech Syst 15:1506–1513

    Article  Google Scholar 

  • Iliescu C, Xu GL, Loe FC, Ong PL, Tay FEH (2007) A 3 dimensional dielectrophoretic filter chip. Electrophoresis 28:1107–1114

    Article  Google Scholar 

  • Iliescu C, Xu GL, Barbarini E, Avram M, Avram A (2009a) Microfluidic device for continuous magnetophoretic separation of white blood cells. Microsyst Technol 15:1157–1162

    Article  Google Scholar 

  • Iliescu C, Tresset G, Xu G (2009b) Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics 3:044104

    Article  Google Scholar 

  • Ino K et al (2008) Cell culture arrays using magnetic force-based cell patterning for dynamic single cell analysis. Lab Chip 8:134–142

    Article  Google Scholar 

  • Ito A, Akiyama H, Kawabe Y, Kamihira M (2007) Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J Biosci Bioeng 104:288–293

    Article  Google Scholar 

  • Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K (2003) Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Org 27:249–255

    Article  Google Scholar 

  • Jen C-P, Huang C-T, Shih H-Y (2010) Hydrodynamic separation of cells utilizing insulator-based dielectrophoresis. Microsyst Technol 16:1097–1104

    Article  Google Scholar 

  • Johann RM (2006) Cell trapping in microfluidic chips. Anal Bioanal Chem 385:408–412

    Article  Google Scholar 

  • Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Khademhosseini A, Suh KY, Jon S, Eng G, Yeh J, Chen G-J, Langer R (2004) A soft lithographic approach to fabricate patterned microfluidic channels. Anal Chem 76:3675–3681

    Article  Google Scholar 

  • Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R (2005) Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5:1380

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C (2014) Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H filter. Electrophoresis 35(5):214–220

    Article  Google Scholar 

  • Li S, Li M, Hui YS, Cao W, Li W, Wen W (2013) A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluid Nanofluid 14:499–508

    Article  Google Scholar 

  • Li M, Li W, Zhang J, Alici G, Wen W (2014) A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J Phys D Appl Phys 47:063001

    Article  Google Scholar 

  • Lin RZ, Ho CT, Liu CH, Chang HY (2006) Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J 1:949–957

    Article  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  Google Scholar 

  • Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Önfelt B, Wiklund M (2008) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93:063901

    Article  Google Scholar 

  • Markx GH, Rousselet J, Pethig R (1997) DEP-FFF: field-flow fractionation using non-uniform electric fields. J Liq Chromatogr Relat Technol 20:2857–2872

    Article  Google Scholar 

  • Martinez-Duarte R (2012) Microfabrication technologies in dielectrophoresis applications—a review. Electrophoresis 33:3110–3132

    Article  Google Scholar 

  • Masuda S, Washizu M, Nanba T (1989) Novel method of cell fusion in field constriction area in fluid integration circuit. IEEE Trans Ind Appl 25:732–737

    Article  Google Scholar 

  • Mittal N, Rosenthal A, Voldman J (2007) nDEP microwells for single-cell patterning in physiological media. Lab Chip 7:1146–1153

    Article  Google Scholar 

  • Mo X et al (2010) Rapid construction of mechanically-confined multi-cellular structures using dendrimeric intercellular linker. Biomaterials 31:7455–7467

    Article  Google Scholar 

  • Morimoto Y, Takeuchi S (2013) Three-dimensional cell culture based on microfluidic techniques to mimic living tissues. Biomater Sci 1:257–264

    Article  Google Scholar 

  • Nasabi M, Khoshmanesh K, Tovar-Lopez FJ, Kalantar-zadeh K, Mitchell A (2013) Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography. Electrophoresis 34:3150–3154

    Article  Google Scholar 

  • Neužil P, Giselbrecht S, Länge K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632

    Article  Google Scholar 

  • Ni M, Tong WH, Choudhury D, Rahim NAA, Iliescu C, Yu H (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10:5411–5441

    Article  Google Scholar 

  • Nilsson J, Evander M, Hammarström B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649:141–157

    Article  Google Scholar 

  • Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811

    Article  Google Scholar 

  • Pethig R, Talary MS, Lee RS (2003) Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE Eng Med Biol Mag 22:43–50

    Article  Google Scholar 

  • Piggee C (2009) Optical tweezers: not just for physicists anymore. Anal Chem 81(1):16–19

    Article  Google Scholar 

  • Ramos A, Morgan H, Green N, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338

    Article  Google Scholar 

  • Rosenthal A, Voldman J (2005) Dielectrophoretic traps for single-particle patterning. Biophys J 88:2193–2205

    Article  Google Scholar 

  • Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152

    Article  Google Scholar 

  • Sun T, Morgan H (2010) Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 8:423–443

    Article  Google Scholar 

  • Suzuki M, Yasukawa T, Shiku H, Matsue T (2008) Negative dielectrophoretic patterning with different cell types. Biosens Bioelectron 24:1043–1047

    Article  Google Scholar 

  • Taff BM, Desai SP, Voldman J (2009) Electroactive hydrodynamic weirs for microparticle manipulation and patterning. Appl Phys Lett 94:084102

    Article  Google Scholar 

  • Tan WH, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci USA 104:1146–1151

    Article  Google Scholar 

  • Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52:2862–2868

    Article  Google Scholar 

  • Tresset G, Iliescu C (2007) Electrical control of loaded biomimetic femtoliter vesicles in microfluidic system. Appl Phys Lett 90:173901

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Voldman J, Toner M, Gray M, Schmidt M (2003) Design and analysis of extruded quadrupolar dielectrophoretic traps. J Electrostat 57:69–90

    Article  Google Scholar 

  • Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP (2009) Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30:782–791

    Article  Google Scholar 

  • Wong I, Ho C-M (2009) Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  Google Scholar 

  • Wu J et al (2011) A sandwiched microarray platform for benchtop cell-based high throughput screening Biomaterials 32:841–848

    Google Scholar 

  • Xing X, Zhang M, Yobas L (2013) Interdigitated 3-D Silicon ring microelectrodes for DEP-based particle manipulation. J Microelectromech Syst 22:363–371

    Article  Google Scholar 

  • Yang M, Li C-W, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001

    Article  Google Scholar 

  • Yeo LY, Hou D, Maheshswari S, Chang HC (2006) Electrohydrodynamic surface microvortices for mixing and particle trapping. Appl Phys Lett 88:233512

    Article  Google Scholar 

  • Yeo LY, Chang HC, Chan PP, Friend JR (2011) Microfluidic devices for bioapplications. Small 7:12–48

    Article  Google Scholar 

  • Yu L, Tay FE, Xu G, Chen B, Avram M, Iliescu C (2006) Adhesive bonding with SU-8 at wafer level for microfluidic devices. J Phys Conf Ser 34:776–780

    Article  Google Scholar 

  • Zhang S et al (2011) A robust high-throughput sandwich cell-based drug screening platform. Biomaterials 32:1229–1241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian Iliescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliescu, C., Xu, G., Tong, W.H. et al. Cell patterning using a dielectrophoretic–hydrodynamic trap. Microfluid Nanofluid 19, 363–373 (2015). https://doi.org/10.1007/s10404-015-1568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1568-2

Keywords

Navigation