Skip to main content
Log in

Simulation of liquid film motor: a charge induction mechanism

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The rotation of suspended liquid films induced by electric fields has been reported. The liquid film rotates when there is an electric current passing through the suspended film and simultaneously there is an external electric field which is perpendicular to the electric current. In this study, we propose an explanation of the phenomenon based on the electrical forces actuating on the charges induced on the free surface of an ohmic liquid. We describe the electrical and hydrodynamic equations and solve them numerically by using finite elements. The numerical results are compared with the experiments, and good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amjadi A, Shirsavar R, Radja NH, Ejtehadi MR (2009) A liquid film motor. Microfluid Nanofluid 6(5):711–715

    Article  Google Scholar 

  • Arifin DR, Yeo LY, Friend JR (2007) Microfluidic blood plasma separation via bulk electrohydrodynamic flows. Biomicrofluidics 1:014103

    Article  Google Scholar 

  • Bonhomme O, Liot O, Biance A-L, Bocquet L (2013) Soft nanofluidic transport in a soap film. Phys Rev Lett 110(5):054502

    Article  Google Scholar 

  • Castellanos A (1998) Electrohydrodynamics, vol 380. Springer, Berlin

    Book  MATH  Google Scholar 

  • Daya ZA, Morris SW, De Bruyn JR (1997) Electroconvection in a suspended fluid film: a linear stability analysis. Phys Rev E 55(3):2682

    Article  Google Scholar 

  • Faetti S, Fronzoni L, Rolla PA (1983) Electrohydrodynamic domain patterns in freely suspended layers of nematic liquid crystals with negative dielectric anisotropy. J Chem Phys 79(3):1427–1433

    Article  Google Scholar 

  • Fuhr G, Hagedorn R, Muller T, Benecke W, Wagner B (1992) Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. Microelectromech Syst J 1(3):141–146

    Article  Google Scholar 

  • Grosu FP, Bologa MK (2010) Electroconvective rotation of a dielectric liquid in external electric fields. Surf Eng Appl Electrochem 46(1):43–47

    Article  Google Scholar 

  • Hughes MP (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11(2):124

    Article  Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A Phys 95(2):259–268

    Article  Google Scholar 

  • Light TS, Kingman B, Bevilacqua AC (1995) The conductivity of low concentrations of CO2 dissolved in ultrapure water from 0–100 °C. In: Proceedings of 209th American Chemical Society National Meeting, pp 2–6

  • Liu Z-Q, Zhang G-C, Li Y-J, Jiang S-R (2012) Water film motor driven by alternating electric fields: its dynamical characteristics. Phys Rev E 85(3):036314

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1):244–248

    Article  Google Scholar 

  • Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann Rev Fluid Mech 1(1):111–146

    Article  Google Scholar 

  • Morris SW, de Bruyn JR, May AD (1990) Electroconvection and pattern formation in a suspended smectic film. Phys Rev Lett 65(19):2378

    Article  Google Scholar 

  • Newman J, Karen E (2012) Electrochemical systems. Wiley, New York

    Google Scholar 

  • Pearson MR, Seyed-Yagoobi J (2011) Experimental study of EHD conduction pumping at the meso-and micro-scale. J Electrostat 69(6):479–485

    Article  Google Scholar 

  • Petkov JT, Danov KD, Denkov ND, Aust R, Durst F (1996) Precise method for measuring the shear surface viscosity of surfactant monolayers. Langmuir 12(11):2650–2653

    Article  Google Scholar 

  • Prasad V, Weeks ER (2009) Flow fields in soap films: relating viscosity and film thickness. Phys Rev E 80:026309

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1999) Ac electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci 217(2):420–422

    Article  Google Scholar 

  • Richter, A, Sandmaier, H (1990) An electrohydrodynamic micropump. In: Proceedings of micro electro mechanical systems, 1990. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, pp 99–104

  • Rutgers MA, Wu XL, Daniel WB (2001) Conducting fluid dynamics experiments with vertically falling soap films. Rev Sci Instrum 72(7):3025–3037

    Article  Google Scholar 

  • Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Ann Rev Fluid Mech 29(1):27–64

    Article  MathSciNet  Google Scholar 

  • Segur JB, Oberstar HE (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43(9):2117–2120

    Article  Google Scholar 

  • Shiryaeva EV, Vladimirov VA, Zhukov MY (2009) Theory of rotating electrohydrodynamic flows in a liquid film. Phys Rev E 80(4):041603

    Article  Google Scholar 

  • Shirsavar R, Amjadi A, Tonddast-Navaei A, Ejtehadi MR (2011) Electrically rotating suspended films of polar liquids. Exp Fluids 50(2):419–428

    Article  Google Scholar 

  • Shirsavar R, Amjadi A, Ejtehadi MR, Mozaffari MR, Feiz MS (2012) Rotational regimes of freely suspended liquid crystal films under electric current in presence of an external electric field. Microfluid Nanofluid 13(1):83–89

    Article  Google Scholar 

  • Sonin AA (1998) Freely suspended liquid crystalline films. Wiley, New York

    Google Scholar 

  • Stevenson P (2005) Remarks on the shear viscosity of surfaces stabilised with soluble surfactants. J Colloid Interface Sci 290(2):603–606

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Ann Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Van Nierop EA, Scheid B, Stone HA (2008) On the thickness of soap films: an alternative to Frankel’s law. J Fluid Mech 602:119

    MATH  MathSciNet  Google Scholar 

  • Yao S, Santiago JG (2003) Porous glass electroosmotic pumps: theory. J Colloid Interface Sci 268(1):133–142

    Article  Google Scholar 

Download references

Acknowledgments

A.R. acknowledges financial support from Spanish Government Ministry MEC under Contract No. FIS2011- 25161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nasiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, M., Shirsavar, R., Saghaei, T. et al. Simulation of liquid film motor: a charge induction mechanism. Microfluid Nanofluid 19, 133–139 (2015). https://doi.org/10.1007/s10404-015-1555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1555-7

Keywords

Navigation