Skip to main content
Log in

Inertia-induced focusing dynamics of microparticles throughout a curved microfluidic channel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents an improved understanding of the dynamic focusing process and lateral migration dynamics of microparticles throughout a classic spiral microchannel at finite Reynolds numbers. A novel two-stage model is proposed to elucidate the particle focusing process along the channel. Specifically, we find that particle migration undergoes a two-stage development comprising the formation of the particle array (stage I) and the shifting of the focusing position after particles are well focused (stage II). Variations in particle focusing ratio and lateral focusing position under different migration lengths and different driving flow rates are quantitatively investigated and analyzed. Results show that the cross-sectional Dean flow affects the particle migration dynamics throughout the channel more significantly at large Reynolds numbers. It is also found that an unstable focusing phenomenon occurs at the intermediate channel region in addition to at the outlets. A state diagram is then generated to illustrate the occurrence and development of this interesting focusing instability along the channel. In addition, the focusing performances of a mixture of different size particles are investigated to reveal the multi-particle separation process and mechanism. The small particle is found to contribute more significantly to the variation in the relative positions of multi-particles. These improved understandings of the particle focusing mechanisms provide insights into the device optimization and the operation protocol improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn Y-C, Jung W, Chen Z (2008) Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel. Lab Chip 8(1):125–133

    Article  Google Scholar 

  • Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  • Bai B, Luo Z, Wang S, He L, Lu T, Xu F (2013) Inertia effect on deformation of viscoelastic capsules in microscale flows. Microfluid Nanofluid 14(5):817–829

    Article  Google Scholar 

  • Berger SA, Talbot L, Yao LS (1983) Flow in curved pipes. Annu Rev Fluid Mech 15(1):461–512

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10):101702

    Article  Google Scholar 

  • Chiu D (2007) Cellular manipulations in microvortices. Anal Bioanal Chem 387(1):17–20

    Article  Google Scholar 

  • Choi Y-S, Lee S-J (2010) Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow. Microfluid Nanofluid 9(4–5):819–829

    Article  Google Scholar 

  • Choi Y-S, Seo K-W, Lee S-J (2011) Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11(3):460–465

    Article  Google Scholar 

  • Dean WR (1928) Fluid motion in a curved channel. Proc R Soc Lond Ser A 121(787):402–420

    Article  MATH  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503

    Article  Google Scholar 

  • Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264

    Article  Google Scholar 

  • Gigras A, Pushpavanam S (2008) Early induction of secondary vortices for micromixing enhancement. Microfluid Nanofluid 5(1):89–99

    Article  Google Scholar 

  • Gossett DR, Di Carlo D (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81(20):8459–8465

    Article  Google Scholar 

  • Guan G, Wu L, Bhagat AA, Li Z, Chen PCY, Chao S, Ong CJ, Han J (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3:1475

    Article  Google Scholar 

  • Hansson J, Karlsson JM, Haraldsson T, Brismar H, van der Wijngaart W, Russom A (2012) Inertial microfluidics in parallel channels for high-throughput applications. Lab Chip 12(22):4644–4650

    Article  Google Scholar 

  • Ho BP, Leal LG (1974) Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech 65(02):365–400

    Article  MATH  Google Scholar 

  • Humphry KJ, Kulkarni PM, Weitz DA, Morris JF, Stone HA (2010) Axial and lateral particle ordering in finite Reynolds number channel flows. Phys Fluids 22(8):081703

    Article  Google Scholar 

  • Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7(2):021501

    Article  Google Scholar 

  • Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12(16):2881–2887

    Article  Google Scholar 

  • Kim S, Lee S (2009) Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry. Exp Fluids 46(2):255–264

    Article  MATH  Google Scholar 

  • Kim YW, Yoo JY (2008) The lateral migration of neutrally-buoyant spheres transported through square microchannels. J Micromech Microeng 18(6):065015

    Article  MathSciNet  Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9(20):2973–2980

    Article  Google Scholar 

  • Lee W, Amini H, Stone HA, Di Carlo D (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci U S A 107(52):22413–22418

    Article  Google Scholar 

  • Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11(7):1359–1367

    Article  Google Scholar 

  • Leshansky AM, Bransky A, Korin N, Dinnar U (2007) Tunable nonlinear viscoelastic “focusing” in a microfluidic device. Phys Rev Lett 98(23):234501

    Article  Google Scholar 

  • Lim J-M, Kim S-H, Yang S-M (2011) Liquid–liquid fluorescent waveguides using microfluidic-drifting-induced hydrodynamic focusing. Microfluid Nanofluid 10(1):211–217

    Article  Google Scholar 

  • Luo ZY, Wang SQ, He L, Xu F, Bai BF (2013) Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matter 9(40):9651–9660

    Article  Google Scholar 

  • Mach AJ, Di Carlo D (2010) Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107(2):302–311

    Article  Google Scholar 

  • Mao X, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”-implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7(10):1260–1262

    Article  Google Scholar 

  • Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels. Phys Fluids 24(3):032001

    Article  Google Scholar 

  • Martel JM, Toner M (2013) Particle focusing in curved microfluidic channels. Sci Rep 3:3340

    Article  Google Scholar 

  • Matas J-P, Morris JF, Guazzelli E (2004) Inertial migration of rigid spherical particles in Poiseuille flow. J Fluid Mech 515(1):171–195

    Article  MATH  Google Scholar 

  • Mu X, Zheng W, Sun J, Zhang W, Jiang X (2013) Microfluidics for manipulating cells. Small 9(1):9–21

    Article  Google Scholar 

  • Nivedita N, Papautsky I (2013) Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7(5):054101

    Article  Google Scholar 

  • Ookawara S, Street D, Ogawa K (2006) Numerical study on development of particle concentration profiles in a curved microchannel. Chem Eng Sci 61(11):3714–3724

    Article  Google Scholar 

  • Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11(7):075025

    Article  Google Scholar 

  • Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(4760):209–210

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162(2):126–131

    Article  Google Scholar 

  • Seo K, Choi Y, Lee S (2012) Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Exp Fluids 53(6):1867–1877

    Article  Google Scholar 

  • Shelby JP, Lim DSW, Kuo JS, Chiu DT (2003) Microfluidic systems: high radial acceleration in microvortices. Nature 425(6953):38

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Sudarsan AP, Ugaz VM (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1):74–82

    Article  Google Scholar 

  • Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W, Hu G, Jiang X (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12(20):3952–3960

    Article  Google Scholar 

  • Sun D, Wang Y, Jiang D, Xiang N, Chen K, Ni Z (2013a) Dynamic self-assembly of particles in an expanding channel flow. Appl Phys Lett 103(7):071905

    Article  Google Scholar 

  • Sun J, Liu C, Li M, Wang J, Xianyu Y, Hu G, Jiang X (2013b) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1):011802

    Article  Google Scholar 

  • Xiang N, Chen K, Sun D, Wang S, Yi H, Ni Z (2013a) Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel. Microfluid Nanofluid 14(1–2):89–99

    Article  Google Scholar 

  • Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z (2013b) High-throughput inertial particle focusing in a curved microchannel: insights into the flow-rate regulation mechanism and process model. Biomicrofluidics 7:044116

    Article  Google Scholar 

  • Xiang N, Yi H, Chen K, Wang S, Ni Z (2013c) Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories. J Micromech Microeng 23(2):025016

    Article  Google Scholar 

  • Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9(1):1–16

    Article  Google Scholar 

  • Yang S, Lee SS, Ahn SW, Kang K, Shim W, Lee G, Hyun K, Kim JM (2012) Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter 8(18):5011–5019

    Article  Google Scholar 

  • Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13(6):1121–1132

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Basic Research Program of China (2011CB707601), the National Natural Science Foundation of China (51375089, 91023024), the Specialized Research Fund for the Doctoral Program of Higher Education (20110092110003), and the Natural Science Foundation of Jiangsu Province (BK2011336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1872 kb)

Supplementary material 2 (PDF 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, N., Chen, K., Dai, Q. et al. Inertia-induced focusing dynamics of microparticles throughout a curved microfluidic channel. Microfluid Nanofluid 18, 29–39 (2015). https://doi.org/10.1007/s10404-014-1395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1395-x

Keywords

Navigation