Skip to main content
Log in

Ionic current in a pH-regulated nanochannel filled with multiple ionic species

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Considering recent widespread applications in nanofluidics, we analyze the ionic current in a pH-regulated nanochannel, using an aqueous NaCl solution in an SiO2 nanochannel with pH adjusted by HCl and NaOH as an example. The model assumed is closer to reality than that in previous analyses, where the channel surface is maintained either at constant potential or constant charge, and only ionic species coming from background salt are considered. The electrical potential, velocity distribution, and ionic current under various conditions are examined by varying the pH, the density of surface functional groups, and the background salt concentration. We show that neglecting ionic species other than those from back ground salt might yield appreciable deviation in ionic current. The mechanisms involved in ionic transport are discussed, and we show that the effects of double-layer thickness and surface potential yield complicated and interesting behaviors in ionic current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ai Y, Qian SZ (2011) Electrokinetic particle translocation through a nanopore. PCCP 13:4060–4071

    Article  Google Scholar 

  • Ai Y, Liu J, Zhang BK, Qian SZ (2010) Field effect regulation of DNA translocation through a nanopore. Anal Chem 82:8217–8225

    Article  Google Scholar 

  • Binner J, Zhang Y (2011) Characterization of silicon carbide and silicon powders by XPS and zeta potential measurement. J Mater Sci Lett 20:123–126

    Article  Google Scholar 

  • Chen Z, Wang P, Chang HC (2005) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanal Chem 382:817–824

    Article  Google Scholar 

  • Choi YS, Kim SJ (2009) Electrokinetic flow-induced currents in silica nanofluidic channels. J Colloid Interface Sci 333:672–678

    Article  Google Scholar 

  • Choi Y, Olsen TJ, Sims PC, Moody IS, Corso BL, Dang MN, Weiss GA, Collins PG (2013) Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering. Nano Lett 13:625–631

    Article  Google Scholar 

  • Daiguji H, Yang PD, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotech 2:209–215

    Article  Google Scholar 

  • Dolnik V (2004) Wall coating for capillary electrophoresis on microchips. Electrophoresis 25:3589–3601

    Article  Google Scholar 

  • FlexPDE (2000) version 2.22; PDE Solutions Inc.: Spokane Valley

  • Gasparac R, Kohli P, Mota MO, Trofin L, Martin CR (2004) Template synthesis of nano test tubes. Nano Lett 4:513–516

    Article  Google Scholar 

  • Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11:795–805

    Article  Google Scholar 

  • Hsu JP, Chen ZS (2007) Electrophoresis of a sphere along the axis of a cylindrical pore: effects of double-layer polarization and electroosmotic flow. Langmuir 23:6198–6204

    Article  Google Scholar 

  • Hsu JP, Tai YH (2010) Effect of multiple ionic species on the electrophoretic behavior of a charge-regulated particle. Langmuir 26:16857–16864

    Article  Google Scholar 

  • Hsu JP, Lee E, Yen FY (2000) Electrophoresis of concentrated spherical particles with a charge-regulated surface. J Chem Phys 112:6404–6410

    Article  Google Scholar 

  • Hsu JP, Tai YH, Yeh LH, Tseng S (2011) Electrophoresis of a charge-regulated sphere in a narrow cylindrical pore filled with multiple ionic species. J Phys Chem B 115:3972–3980

    Article  Google Scholar 

  • Huang KD, Yang RJ (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology 18:115701

    Article  Google Scholar 

  • Jacobsa S, Regaa F, Burkhoffb D, Meynsa B (2012) The use of a CircuLite micro-pump for congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg 42:741–743

    Article  Google Scholar 

  • Karenga S, El Rassi Z (2010) A novel, neutral hydroxylated octadecyl acrylate monolith with fast electroosmotic flow velocity and its application to the separation of various solutes including peptides and proteins in the absence of electrostatic interactions. Electrophoresis 31:3192–3199

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  • Kim SJ, Wang YC, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202

    Article  Google Scholar 

  • Kutter JP (2000) Current developments in electrophoretic and chromatographic separation methods on microfabricated devices. Trends Anal Chem 19:352–363

    Article  MathSciNet  Google Scholar 

  • Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok PY (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30:771–776

    Article  Google Scholar 

  • Lee SM, Kuan YD, Sung MF (2013) Diaphragm air–liquid micro pump applicable to the direct methanol fuel cell. J Power Sources 238:290–295

    Article  Google Scholar 

  • Li CY, Ma FX, Wu ZQ, Gao HL, Shao WT, Wang K, Xia XH (2013) Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions. Adv Funct Mater 23:3836–3844

    Article  Google Scholar 

  • Liu H, Qian SZ, Bau HH (2007) The effect of translocating cylindrical particles on the ionic current through a nanopore. Biophys J 92:1164–1177

    Article  Google Scholar 

  • Mei J, Xu JR, Xiao YX, Liao XY, Qiu GF, Feng YQ (2008) A novel covalent coupling method for coating of capillaries with liposomes in capillary electrophoresis. Electrophoresis 29:3825–3833

    Article  Google Scholar 

  • O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2(74):1607–1626

    Article  Google Scholar 

  • Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interface Sci 62:189–235

    Article  Google Scholar 

  • Ohshima H (2006) Electrophoresis of soft particles: analytic approximations. Electrophoresis 27:526–533

    Article  Google Scholar 

  • Park HM, Lee JS, Kim TW (2007) Comparison of the Nernst–Planck model and the Poisson–Boltzmann model for electroosmotic flows in microchannels. J Colloid Interface Sci 315:731–739

    Article  Google Scholar 

  • Pevarnik M, Healy K, Davenport M, Yen J, Siwy ZS (2012) A hydrophobic entrance enhances ion current rectification and induces dewetting in asymmetric nanopores. Analyst 137:2944–2950

    Article  Google Scholar 

  • Qian SZ, Wang AH, Afonien JK (2006) Electrophoretic motion of a spherical particle in a converging-diverging nanotube. J Colloid Interface Sci 303:579–592

    Article  Google Scholar 

  • Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024

    Article  Google Scholar 

  • Shugai AA, Carnie SL (1999) Electrophoretic motion of a spherical particle with a thick double layer in bounded flows. J Colloid Interface Sci 213:298–315

    Article  Google Scholar 

  • So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127:11906–11907

    Article  Google Scholar 

  • Sorgenfrei S, Chiu CY, Johnston M, Nuckolls C, Shepard KL (2011) Debye screening in single-molecule carbon nanotube field-effect sensors. Nano Lett 11:3739–3743

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Article  Google Scholar 

  • Storm AJ, Chen JH, Zandbergen HW, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E 71:051903

    Article  Google Scholar 

  • Tseng S, Lo TW, Hsu C, Fu YK, Hsu JP (2013a) Importance of temperature on the diffusiophoretic behavior of a charge-regulated zwitterionic particle. PCCP 15:7512–7519

    Article  Google Scholar 

  • Tseng S, Tai YH, Hsu JP (2013b) Electrokinetic flow in a pH-regulated, cylindrical nanochannel containing multiple ionic species. Microfluid Nanofluidics 15:847–857

    Article  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022–1025

    Article  Google Scholar 

  • Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15:119–124

    Article  Google Scholar 

  • Wang M, Revil A (2010) Electrochemical charge of silica surfaces at high ionic strength in narrow channels. J Colloid Interface Sci 343:381–386

    Article  Google Scholar 

  • Wang XY, Cheng C, Wang SL, Liu SR (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanifluid 6:145–162

    Article  Google Scholar 

  • Wang M, Kang QJ, Ben-Naim E (2010) Modeling of electrokinetic transport in silica nanofluidic channels. Anal Chim Acta 664:158–164

    Article  Google Scholar 

  • Wang X, Zheng G, Xu L, Cheng W, Xu B, Huang Y, Sun D (2012) Fabrication of nanochannels via near-field electrospinning. Appl Phys A 108:825–828

    Article  Google Scholar 

  • White HS, Bund A (2008) Ion current rectification at nanopores in glass membranes. Langmuir 24:2212–2218

    Article  Google Scholar 

  • Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713

    Article  Google Scholar 

  • Xia D, Yan J, Hou S (2012) Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 8:2787–2801

    Article  Google Scholar 

  • Xu BY, Xu JJ, Xia XH, Chen HY (2010) Large scale lithography-free nano channel array on polystyrene. Lab Chip 10:2894–2901

    Article  Google Scholar 

  • Yan Y, Wang L, Xue J, Chang HC (2013) Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry. J Chem Phys 138:044706

    Article  Google Scholar 

  • Yaroshchuk A (2012) Current-induced concentration polarization of interfaces between non-ideally perm-selective ion-exchange media and electrolyte solutions. J Membr Sci 396:43–49

    Article  Google Scholar 

  • Yeh LH, Zhang M, Qian S (2013) Ion transport in a pH-regulated nanopore. Anal Chem 85:7527–7534

    Article  Google Scholar 

  • Yu HY, Hung SH, Hsu JP (2004) Electrophoresis of a charge-regulated particle at an arbitrary position in a spherical cavity. Colloid Polym Sci 283:10–14

    Article  Google Scholar 

  • Yusko EC, An R, Mayer M (2010) Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 4:477–487

    Article  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39:1014–1035

    Article  Google Scholar 

  • Zhao C, Yang C (2012) Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluidics 13:179–203

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ping Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, S., Tai, YH. & Hsu, JP. Ionic current in a pH-regulated nanochannel filled with multiple ionic species. Microfluid Nanofluid 17, 933–941 (2014). https://doi.org/10.1007/s10404-014-1384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1384-0

Keywords

Navigation