Skip to main content
Log in

Probing the influence of superhydrophobicity and mixed wettability on droplet displacement behavior

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The importance of fundamental understanding of droplet dynamics and the concomitant implications of wall wettability are critical in the emergent science and technology areas including digital microfluidics and clean energy conversion. In this work, mesoscopic illustration, based on the two-phase lattice Boltzmann model, of droplet dynamics in a microchannel is presented in order to unveil the role of superhydrophobicity and mixed wettability. The impact of critical physicochemical determinants, including capillary number and droplet size, is explored in the context of droplet–wettability interactions. Temporal evolution of wetted length and wetted area for a combination of wettability scenarios is furnished in detail in order to elucidate the droplet displacement dynamics. Capillary number plays an important role with disparate droplet behavioral patterns stemming from superhydrophobic and mixed-wet wall characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

a 0 :

Initial droplet height

A :

Wetted area

\(\frac{A}{A_0}\) :

Dimensionless wetted area

b :

Wetted length

\(\frac{b}{b_0}\) :

Dimensionless wetted length

f i :

Probability density function

f eq i :

Equilibrium density function

g :

Acceleration due to gravity

g 1w :

Interactive force strength between nonwetting phase and wall

g 2w :

Interactive force strength between wetting phase and wall

g k :

Interactive strength between the component k and wall

\(G_{k\bar k}\) :

Interactive potential

h :

Width of the microchannel

n w :

Number density of the wall

\(\Updelta P\) :

Capillary pressure difference

u :

Macroscopic velocity of particle

V :

Volume of the droplet

θ :

Contact angle

μ :

Dynamic viscosity

ν k :

Kinematic viscosity of Kth component

ρ k :

Density of kth component

ρ :

Density

σ :

Surface tension

τ :

Relaxation parameter

\(\varPsi_{k}\) :

Effective mass density function

ω :

Collision frequency

\(\varOmega\) :

Collision operator

Ca:

Capillary number \(\left({ \frac{\rho_2 V g}{\sigma h}}\right)\)

HI:

Hydrophilic

HO:

Hydrophobic

LB:

Lattice Boltzmann

LBM:

Lattice Boltzmann method

S–C:

Shan and Chen

SCA:

Static contact angle

References

  • Adroher XC, Wang Y (2011) Ex-situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells. J Power Sources 196:9544–9551

    Article  Google Scholar 

  • Aminfar H, Mohammad M (2009) Lattice Boltzmann method for electrowetting modelling and simulation. Comput Methods Appl Mech Engg 198:3852–3868

    Article  MATH  Google Scholar 

  • Blossey R (2003) Self-cleaning surfaces virtual realities. Nat Mater 2:301–306

    Google Scholar 

  • Chang Q, Alexander JID (2006) Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid Nanofluid 2(4):309–326

    Article  Google Scholar 

  • Cho SC, Wang Y, Chen KS (2012a) Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: Forces, deformation, and detachment. I: theoretical and numerical analyses. J Power Sources 206:119–128

    Article  Google Scholar 

  • Cho SC, Wang Y, Chen KS (2012b) Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: forces, deformation and detachment. II: comparisons of analytical solution with numerical and experimental results. J Power Sources 210:191–197

    Article  Google Scholar 

  • Cui J, Li W, Lam W (2011) Numerical investigation on drag reduction with superhydrophobic surfaces by lattice-Boltzmann method. Comput Math Appl 61(12):3678–3689

    Article  Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure. Academic Press, San Diego, CA

  • Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions. Langmuir 21:2624–2629

    Article  Google Scholar 

  • Fakhari A, Rahimian MH (2009) Simulation of falling droplet by the lattice Boltzmann method. Commun Nonlinear Sci Numer Simul 14:3046–3055

    Article  MATH  Google Scholar 

  • Fei K, Chen WH, Hong CW (2008) Microfluidic analysis of co2 bubble dynamics using thermal lattice-Boltzmann method. Microfluid Nanofluid 5(1):119–129

    Article  Google Scholar 

  • Feuillebois F, Bazant MZ, Vinogradova OI (2010) Transverse flow in thin super hydrophobic channels. Phy Rev E 82(1–4):055301

    Google Scholar 

  • Francois F, Bazant MZ, Vinogradova OI (2009) Effective slip over superhydrophobic surfaces in thin channels. Phys Rev Lett 102:026001

    Article  Google Scholar 

  • Gerlach D, Tomar G, Biswas G, Durst F (2006) Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Int J Heat Mass Transf 49:740–754

    Article  MATH  Google Scholar 

  • Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327

    Article  Google Scholar 

  • Gupta A, Kumar R (2008) Lattice Boltzmann simulation to study multiple bubble dynamics. Int J Heat Mass Transf 51:5192–5203

    Article  MATH  Google Scholar 

  • Hao L, Cheng P (2010) Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J Power Sources 195:3870–3881

    Article  Google Scholar 

  • He XY, Chen SY, Zhang RY (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comp Phys 152:642–663

    Article  MathSciNet  MATH  Google Scholar 

  • Hou SL, Shan X, Zou QS, Doolen GD, Soll WE (1997) Evaluation of two lattice Boltzmann models for multiphase flows. J Comp Phys 138(2):695–713

    Google Scholar 

  • Huang JJ, Shu C, Chew YT (2008) Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability. J Colloid Interface Sci 328:124–133

    Article  Google Scholar 

  • Kang Q, Zhang D, Chen S (2002) Displacement of a two dimensional immiscible droplet in a channel. Phys Fluids 40:3203–3214

    Article  Google Scholar 

  • Kang Q, Zhang D, Chen S (2005) Displacement of a two dimensional immiscible droplet in a channel. J Fluid Mech 545:41–66

    Article  MathSciNet  MATH  Google Scholar 

  • Kawasaki A, Onishi J, Chen Y, Ohashi H (2008) A lattice Boltzmann model for contact-line motions. Comput Math Appl 55:1492–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar A, Williams SJ, Chuang H, Greend NG, Wereleye ST (2011) Hybrid opto-electric manipulation in microfluidics opportunities and challenges. Lab Chip 11:2135–2148

    Article  Google Scholar 

  • Kumari N, Bahadur V, Garimella SV (2008) Electrical actuation of dielectric droplets. J Micromech Microeng 18:085018–085026

    Article  Google Scholar 

  • Li Q, He YL, Tang GH, Tao WQ (2011) Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluid 10(3):607–618

    Article  Google Scholar 

  • Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743–750

    Article  Google Scholar 

  • McHale G, Shirtcliffe NJ, Newton MI (2004) Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20:10146–10149

    Article  Google Scholar 

  • Mukherjee P (2007) Pore-scale modeling and analysis of the polymer electrolyte fuel cell catalyst layer. Ph.D, thesis Department of Mechanical Engineering Pennsylvania State University, USA

  • Mukherjee PP, Wang C, Kang Q (2009) Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim Acta 54:6861–6875

    Article  Google Scholar 

  • Mukherjee PP, Kang Q, Wang C (2011) Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells-progress and perspective. Energy Environ Sci 4:346–369

    Article  Google Scholar 

  • Osborn WR, Orlandini E, Swift MR, Yeomans JM, Banavar JR (1995) Lattice Boltzmann study of hydrodynamic spinodal decomposition. Phys Rev Lett 75:4031–4034

    Article  Google Scholar 

  • Quere D (2005) Non-sticking drops. Rep Prog Phys 68:2495–2532

    Article  Google Scholar 

  • Ray B, Biswas G, Sharma A (2012) Oblique drop impact on deep and shallow liquid. Commun Comput Phys 11:1386–1396

    Google Scholar 

  • Salah Y, Tabe Y, Chikahisa T (2012) Two phase flow simulation in a channel of a polymer electrolyte membrane fuel cell using the lattice Boltzmann method. J Power Sources 199:85–93

    Article  Google Scholar 

  • Schleizer AD, Bonnecaze RT (1998) Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J Fluid Mech 383:29–54

    Article  Google Scholar 

  • Shan X, Doolen G (1995) Multicomponent lattice-Boltzmann model with interparticle interaction. J Stat Phys 81(4):379–393

    Google Scholar 

  • Shan X, Doolen G (1996) Diffusion in a multicomponent lattice Boltzmann equation model. Phys Rev E 54:3614–3620

    Article  Google Scholar 

  • Shan X, Chen H, Prasad PLN, Basu S (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1817

    Article  Google Scholar 

  • Shen S, Bi F, Guo Y (2012) Simulation of droplets impact on curved surfaces with lattice Boltzmann method. Int J Heat Mass Transf 55:6938–6943

    Article  Google Scholar 

  • Sinha PK, Wang CY (2008) Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chem Eng Sci 63:1081–1091

    Article  Google Scholar 

  • Swift M, Osborn W, Yeomans J (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833

    Article  Google Scholar 

  • Wang Y, Chen K, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  Google Scholar 

  • Wolf-Gladrow DA 2000 Lattice gas cellular automata and lattice Boltzmann model: an introduction. Springer, Berlin

  • Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28

    Article  MATH  Google Scholar 

  • Zhang J, Kwok DY (2004) Lattice Boltzmann study on the contact angle and contact line dynamics of liquid–vapor interfaces. Langmuir 20:8137–8141

    Article  Google Scholar 

  • Zhang J, Kwok D (2006) Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22:4998–5004

    Article  Google Scholar 

  • Zu YQ, Yan YY (2011) Lattice Boltzmann method for modelling droplets on chemically heterogeneous and microstructured surfaces with large liquid gas density ratio. J Appl Math 76(5):743–760

    MathSciNet  Google Scholar 

Download references

Acknowledgment

The helpful comments by the reviewers are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amaresh Dalal or Partha P. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randive, P., Dalal, A. & Mukherjee, P.P. Probing the influence of superhydrophobicity and mixed wettability on droplet displacement behavior. Microfluid Nanofluid 17, 657–674 (2014). https://doi.org/10.1007/s10404-014-1350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1350-x

Keywords

Navigation