Skip to main content
Log in

Review on miniaturized paraffin phase change actuators, valves, and pumps

  • Review Article
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

During the last 15 years, miniaturized paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion toward a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications—actuators, valves, and pumps—the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726

    Article  Google Scholar 

  • Al-Faqheri W, Ibrahim F, Thio THG, Moebius J, Joseph K, Arof H, Madou M (2013) Vacuum/compression valving (VCV) using paraffin wax on a centrifugal microfluidic CD platform. PLoS ONE 8(3):e58523

    Article  Google Scholar 

  • Baek SK, Yoon YK, Jeon HS, Seo S, Park JH (2013) A wireless sequentially actuated microvalve system. J Micromech Microeng 23:045006

    Article  Google Scholar 

  • Bodén R (2008) Microactuators for powerful pumps. Dissertation, Uppsala University urn:nbn:se:uu:diva-9402

  • Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2005) A polymeric paraffin micropump with active valves for high-pressure microfluidics. In: Proceedings of Transducers’05, pp 201–204

  • Bodén R, Lehto M, Schweitz J-Å (2006a) A paraffin driven linear microactuator for high force and large displacement applications. In: Proceedings of actuator, 10th international conference on new actuators, pp 720–723

  • Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2006b) A polymeric paraffin actuated high pressure micropump. Sens Actuators A Phys 127(1):88–93

    Article  Google Scholar 

  • Bodén R, Hjort K, Schweitz J-Å, Simu U (2008a) A metallic micropump for high-pressure microfluidics. J Micromech Microeng 18(11):115009

    Article  Google Scholar 

  • Bodén R, Lehto M, Margell J, Hjort K, Schweitz J-Å (2008b) On-chip liquid storage and dispensing for lab-on-a-chip applications. J Micromech Microeng 18(7):075036

    Article  Google Scholar 

  • Bodén R, Ogden S, Hjort K (2013) Microdispenser with continuous flow and selectable target volume for microfluidic high-pressure applications. J Microelectromech Syst. doi:10.1109/JMEMS.2013.2279976

    Google Scholar 

  • Boustheen A, Homburg FGA, Somhorst MGAM, Dietzel A (2011) A layered polymeric μ-valve suitable for lab-on-foil: design, fabrication, and characterization. Microfluid Nanofluid 11(6):663–673

    Article  Google Scholar 

  • Boustheen A, Homburg FGA, Dietzel A (2012) A modular microvalve suitable for lab on a foil: manufacturing and assembly concepts. Microelectron Eng 98:638–641

    Article  Google Scholar 

  • Carlén ET, Mastrangelo CH (1999) Simple, high actuation power, thermally activated paraffin actuator. In: Proceedings of Transducers’99 conference, pp 1364–1367

  • Carlén ET, Mastrangelo CH (2002a) Electrothermally activated paraffin microactuators. J Microelectromech Syst 11(3):165–174

    Article  Google Scholar 

  • Carlén ET, Mastrangelo CH (2002b) Surface micromachined paraffin actuated microvalve. J Microelectromech Syst 11(5):408–420

    Article  Google Scholar 

  • Charlesby A (1954) The crosslinking and degradation of paraffin chains by high-energy radiation. Proc R Soc Lond A 222(1148):60–74

    Article  Google Scholar 

  • Choi J-Y, Ruan J, Coccetti F, Lucyszyn S (2009) Three-dimensional RF MEMS switch for power applications. IEEE Trans Ind Electron 56(4):1031–1039

    Article  Google Scholar 

  • De Volder M, Reynaerts D (2010) Pneumatic and hydraulic microactuators: a review. J Micromech Microeng 20(4):043001

    Article  Google Scholar 

  • Dubois P, Vela E, Koster S, Briand D, Shea HR, de Rooij N-F (2006) Paraffin-PDMS composite thermo microactuator with large vertical displacement capability. In: Proceedings of actuator, 10th international conference on new actuators, pp 215–218

  • Feng G-H, Chou Y-C (2011) Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design. Microelectron Eng 88(2):187–194

    Article  Google Scholar 

  • Freund M, Csikos R, Keszthelyi S, Mozes GY (1982) Paraffin products properties, technologies, applications. Elsevier Scientific Publishing Company, Amsterdam. ISBN:0-444-99712-1

  • Gilbertson RG, Busch JD (1996) A survey of micro-actuator technologies for future spacecraft missions. J Br Interplanet Soc 49:129–138

    Google Scholar 

  • Goldschmidtboing F, Katus P, Geipel A and Woias P (2008) A novel self-heating paraffin membrane micro-actuator. In: Proceedings of MEMS, pp 531–534

  • Gowreesunker BL, Tassou SA, Kolokotroni M (2012) Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy Build 47:353–359

    Article  Google Scholar 

  • Grönland T-A, Rangsten P, Nese M, Lang M (2007) Miniaturization of components and systems for space using MEMS-technology. Acta Astronaut 61(1–6):228–233

    Article  Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174

    Article  Google Scholar 

  • Jaw KS, Hsu CK, Lee JS (2001) The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral. Thermochim Acta 367–368:165–168

    Article  Google Scholar 

  • Jonsson J, Ogden S, Johansson L, Hjort K, Thornell G (2012) Acoustically enriching, large-depth aquatic sampler. Lab Chip 12(9):1619–1628

    Article  Google Scholar 

  • Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material. JSME Int J C 40(4):736–742

    Article  Google Scholar 

  • Klintberg L, Thornell G (2002) A thermal microactuator made by partial impregnation of polyimide with paraffin. J Micromech Microeng 12(6):849–854

    Article  Google Scholar 

  • Klintberg L, Karlsson M, Stenmark L, Schweitz J-Å, Thornell G (2002) A large stroke, high force paraffin phase transition actuator. Sens Actuators A Phys 96(2–3):189–195

    Article  Google Scholar 

  • Klintberg L, Karlsson M, Stenmark L, Thornell G (2003a) A thermally activated paraffin-based actuator for gas-flow control in a satellite electrical propulsion system. Sens Actuators A Phys 105(3):237–246

    Article  Google Scholar 

  • Klintberg L, Svedberg M, Nikolajeff F, Thornell G (2003b) Fabrication of a paraffin actuator using hot embossing of polycarbonate. Sens Actuators A Phys 103(3):307–316

    Article  Google Scholar 

  • Kobayashi T, Matsuoka S, Ueno A, Maeda R (2004) An easy fabrication technique for micro paraffin actuator and application to microvalve. In: Electrochemical Society proceedings, vol 2004-09, pp 330–335

  • Kong Q, Ma J, Che C (2009) Theoretical and experimental study of volumetric change rate during phase change process. Int J Energy Res 33(5):513–525

    Article  Google Scholar 

  • Kratz H, Eriksson A, Karlsson M, Köhler J, Thornell G (2007) Analysis of thermal transients in an asymmetric silicon-based heat dissipation stage. IEEE Trans Compon Packag Technol 30(3):444–456

    Article  Google Scholar 

  • Krulevitch P, Lee AP, Ramsey PB, Trevino JC, Hamilton J, Northrup MA (1996) Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4):270–282

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  • Lee JS, Lucyszyn S (2005) A micromachined refreshable Braille cell. J Microelectromech Syst 14(4):673–682

    Article  Google Scholar 

  • Lee JS, Lucyszyn S (2007a) Design and pressure analysis for bulk micromachined electrothermal hydraulic microactuators using a PCM. Sens Actuators A Phys 133(2):294–300

    Article  Google Scholar 

  • Lee JS, Lucyszyn S (2007b) Thermal analysis for bulk-micromachined electrothermal hydraulic microactuators using a phase change material. Sens Actuators A Phys 135(2):731–739

    Article  Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554

    Article  Google Scholar 

  • Lehto M, Bodén R (2008) A multi-stable miniature paraffin actuator. In: Proceedings of actuator, 11th international conference on new actuators, pp 864–867

  • Lehto M, Boden R, Simu U, Hjort K and Schweitz J-Å (2004) Printed circuit board paraffin actuators for disposable microfluidic systems. In: Proceedings of actuator, 9th international conference on new actuators, pp 220–223

  • Lehto M, Schweitz J-Å, Thornell G (2007) Binary mixtures of n-alkanes for tunable thermohydraulic actuators. J Microelectromech Syst 16(3):728–733

    Article  Google Scholar 

  • Lehto M, Bodén R, Simu U, Hjort K, Thornell G, Schweitz J-Å (2008) A polymeric paraffin microactuator. J Microelectromech Syst 17(5):1172–1177

    Article  Google Scholar 

  • Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004a) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336

    Article  Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004b) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Article  Google Scholar 

  • Malik A, Ogden S, Amberg G, Hjort K (2013) Modeling and analysis of a phase change material thermohydraulic actuator. J Microelectromech Syst 22(1):186–194

    Article  Google Scholar 

  • McCarthy DK (1968) Nonmagnetic, lightweight oscillating actuator. In: Proceedings of the 3rd aerospace mechanisms symposium, pp 163–170

  • Mehling H, Cabeza LF (2008) Heat and cold storage with PCM an up to date introduction into basics and applications. Springer, Berlin. ISBN:978-3-540-68556-2

  • Nguyen NT, Wereley S (2006) Fundamentals, applications of microfluidics, 2nd edn. Artech House, Boston

    Google Scholar 

  • Ogden S, Bodén R, Hjort K (2010) A latchable valve for high-pressure microfluidics. J Microelectromech Syst 19(2):396–401

    Article  Google Scholar 

  • Ogden S, Jonsson J, Thornell G, Hjort K (2012) A latchable high-pressure thermohydraulic valve actuator. Sens Actuators A Phys 188:292–297

    Article  Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39

    Article  Google Scholar 

  • Oh KW, Namkoong K, Park C (2005) A phase change microvalve using a meltable magnetic material: ferro-wax. In: Proceedings of μTAS 2005 conference, pp 554–556

  • Pal R, Yang M, Johnson BN, Burke DT, Burns MA (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748

    Article  Google Scholar 

  • Park J-M, Cho Y-K, Lee B-S, Lee J-G, Ko C (2007) Multifunctional microvalves control by optical illumination and its application in centrifugal microfluidic devices. Lab Chip 7(5):557–564

    Article  Google Scholar 

  • Royer GG (1932) Improvements in or relating to thermostats, GB 374,046

  • Sant HJ, Ho T, Gale BK (2010) An in situ heater for a phase-change-material-based actuation system. J Micromech Microeng 20(8):085039

    Article  Google Scholar 

  • Selvaganapathy P, Carlén ET, Mastrangelo CH (2003) Electrothermally actuated inline microfludic valves. Sens Actuators A Phys 104(3):275–282

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review of thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  Google Scholar 

  • Sharma G, Klintberg L, Hjort K (2011a) Viton-based fluoroelastomer microfluidics. J Micromech Microeng 21(2):025016

    Article  Google Scholar 

  • Sharma G, Svensson S, Ogden S, Klintberg L, Hjort K (2011b) High-pressure stainless steel active membrane microvalves. J Micromech Microeng 21(7):075010

    Article  Google Scholar 

  • Sherwood JF (1957) Device for utilizing the thermal expansion of wax. US 2(815):642

    Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Srinivasan P, Spearing SM (2009) Material selection for optimal design of thermally actuated pneumatic and phase change microactuators. J Microelectromech Syst 18(2):239–249

    Article  Google Scholar 

  • Srivastava S, Handoo J, Agrawal KM, Joshi GC (1993) Phase-transition studies in n-alkanes and petroleum-related waxes—a review. J Phys Chem Solids 54(6):639–670

    Article  Google Scholar 

  • Stange WC (1977) The MJS-77 magnetometer actuator. In: Proceedings of the 11th aerospace mechanisms symposium, pp 77–86

  • Svedberg M, Nikolajeff F, Thornell G (2006) On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes. Sens Actuators A Phys 125(2):534–547

    Article  Google Scholar 

  • Svensson S, Sharma G, Ogden S, Hjort K, Klintberg L (2010) High-pressure peristaltic membrane micropump with temperature control. J Microelectromech Syst 19(6):1462–1469

    Article  Google Scholar 

  • Tibbitts SF (1988) High output paraffin actuators: utilization in aerospace mechanisms. In: Proceedings of the 22nd aerospace mechanisms symposium, pp 13–28

  • Tibbitts SF (1991) High-output paraffin linear motors: utilization in adaptive systems. In: Proceedings of SPIE, vol 1543, pp 388–399

  • Vernet S (1938) Thermostat. US 2,115,501

  • Vernet S (1945) Sealing means. US 2,368,181

  • Vernet S, Kim J, Lee J (1941) Temperature responsive element. US 2,259,846

  • Wang J, Severtson S, Stein A (2006) Significant and concurrent enhancement of stiffness, strength and toughness for paraffin wax through organoclay addition. Adv Mater 18:1585–1588

    Article  Google Scholar 

  • Wang J, Stevertson S, Geil P (2007) Brittle-ductile transitions and the toughening mechanism in paraffin/organo-clay nanocomposites. Mater Sci Eng, A 467:172–180

    Article  Google Scholar 

  • Yang B, Lin Q (2007) A latchable microvalve using phase change of paraffin wax. Sens Actuators A Phys 134(1):194–200

    Article  Google Scholar 

  • Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867

    Article  Google Scholar 

  • Yoo JC, Choi YJ, Kang CJ, Kim Y-S (2007) A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and paraffin-actuated microvalve. Sens Actuators A Phys 139(1–2):216–220

    Article  Google Scholar 

  • Yousef H, Lehto M, Jäderblom T, Enculescu I and Hjort K (2005) A device integrating paraffin microactuator, fluidic compartment and microneedle array for fluid injection or sampling. In: Proceedings of μTAS, pp 157–159

  • Zoller P, Walsh DJ (1995) Standard pressure–volume–temperature data for polymers. Technomic, Lancaster, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Ogden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogden, S., Klintberg, L., Thornell, G. et al. Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluid 17, 53–71 (2014). https://doi.org/10.1007/s10404-013-1289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1289-3

Keywords

Navigation