Skip to main content
Log in

Slip in nanoscale shear flow: mechanisms of interfacial friction

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The atomistic mechanism of fluid–solid interfacial friction as the basis of slip is still not fully understood. This study explores the interfacial friction mechanisms and their interplay with the nanoscale slip behavior using non-equilibrium molecular dynamics simulations. Our results show that there is an abrupt jump of slip length at a critical shear rate, corresponding to the transition from “defect slip” at low shear rates to “collective slip” at high shear rates. Here, we identified two mechanisms of interfacial friction: surface potential and collision mechanisms. Their impacts on slip are elaborated through a quantitative scaling estimation and our results show that both mechanisms contribute to the defect slip at low shear rates, while the collision mechanism dominates the collective slip at high shear rates. We also verify the importance of the bulk viscous heating via a comparison among different thermostat strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:031504

    Article  Google Scholar 

  • Barrat JL, Bocquet L (1999) Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss 112:119

    Article  Google Scholar 

  • Barrat JL, Hansen JP (2003) Basic concepts for simple and complex liquids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bernardi S, Todd B, Searles DJ (2010) Thermostating highly confined fluid. J Chem Phys 132:244706

    Article  Google Scholar 

  • Bocquet L, Barrat JL (2007) Flow boundary conditions from nano-to micro-scalesm. Soft Matter 3:685

    Article  Google Scholar 

  • Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E (2005) Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys Rev Lett 94:056102

    Article  Google Scholar 

  • Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191

    Article  Google Scholar 

  • Hoogerbrugge P, Keolman J (1992) Simulating microscopic hydrodynamics phenomena with dissipative particle dynamics. Europhys Lett 19(3):155

    Article  Google Scholar 

  • Khare R, de Pablo J, Yethiraj A (1997) Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J Chem Phys 107(7):2589

    Article  Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2007) Microfluidics: The no-slip boundary condition In: Tropea C, Yarin A, Foss JF (eds) Handbook of experimental fluid dynamic, chap 19. Springer, New-York

    Google Scholar 

  • Liem SY, Brown D, Clarke JH (1992) Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A 45:3706

    Article  Google Scholar 

  • Martini A, Hsu HY, Patankar NA, Lichter S (2008a) Slip at high shear rates. Phys Rev Lett 100:206001

    Article  Google Scholar 

  • Martini A, Roxin A, Snurr R, Wang Q, Lichter S (2008b) Molecular mechanims of liquid slip. J Fluid Mech 600:257

    Article  MATH  Google Scholar 

  • Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231

    Article  MATH  Google Scholar 

  • Neto C, Evans DR, Bonaccurso E, Butt H, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies Rep Progr Phys 68:2859

    Article  Google Scholar 

  • Niavarani A, Priezjev NV (2008) Slip boundary conditions for shear flow of polymer melts past atomically at surfaces. Phys Rev E 77:041606

    Article  Google Scholar 

  • Pahlavan AA, Freund JB (2011) Effect of solid properties on slip at a fluid-solid interface. Phys Rev E 83:021602

    Article  Google Scholar 

  • Pastorino C, Kreer T, Müller M, Binder K (2007) Comparison of dissipative particle dynamics and langevin thermostats for out-of-equilibrium simulations of polymeric systems. Phys Rev E 76:026706

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    Article  MATH  Google Scholar 

  • Priezjev NV (2007a) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127:144708

    Article  Google Scholar 

  • Priezjev NV (2007b) Rate-dependent slip boundary conditions for simple fluids. Phys Rev E 75:051605

    Article  Google Scholar 

  • Priezjev NV (2009) Shear rate threshold for the boundary slip in dense polymer films. Phys Rev E 80:031608

    Article  Google Scholar 

  • Priezjev NV (2010) Relationship between induced fluid structure and boundary slip in nanoscale polymer films. Phys Rev E 82:051603

    Article  Google Scholar 

  • Priezjev NV, Troian SM (2004) Molecular origin and dynamic behavior of slip in the sheared polymer films. Phys Rev Lett 92(1):018302

    Article  Google Scholar 

  • Sendner C, Horinek D, Bocquet L, Netz RR (2009) Interfacial water at hydrophobic and hydrophilic surfaces: Slip,viscosity, and diffusion. Langmuir 25:10768

    Article  Google Scholar 

  • Smith ED, Robbins MO (1996) Friction on adsorbed monolayers. Phys Rev B 54:8252

    Article  Google Scholar 

  • Soddemann T, Dünweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68:046702

    Article  Google Scholar 

  • Steele WA (1973) The physical interaction of gases with crystalline solids. Surf Sci 36:317

    Article  Google Scholar 

  • Thompson PA, Robbins MO (1990a) Origin of stick-slip motion in boundary lubrication. Phys Rev A 41(12):6830

    Article  Google Scholar 

  • Thompson PA (1990b) Shear flow near solids: epitaxial order and flow boundary conditions. Robbins MO Science 250(4982):792

    Article  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360

    Article  Google Scholar 

  • Voronov RS, Papavassiliou DV, Lee LL (2006) Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J Chem Phys 124:204701

    Article  Google Scholar 

  • Voronov RS, Papavassiliou DV, Lee LL (2007) Slip length and contact angle over hydrophobic surfaces. Chem Phys Lett 44:273

    Article  Google Scholar 

  • Yong X, Zhang LT (2010) Investigating liquid-solid interfacial phenomena in a couette flow at nanoscale. Phys Rev E 82:056313

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NRC (NRC-38-09-954) and NSF (CMMI-0928448) and utilized the Rensselaer Polytechnic Institute Computational Center for Nanotechnology Innovations Blue Gene/L. We gratefully acknowledge the discussion with Dr. Mark O. Robbins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, X., Zhang, L.T. Slip in nanoscale shear flow: mechanisms of interfacial friction. Microfluid Nanofluid 14, 299–308 (2013). https://doi.org/10.1007/s10404-012-1048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1048-x

Keyword

Navigation