Microfluidics and Nanofluidics

, Volume 9, Issue 2, pp 551–558

Hydrodynamically driven docking of blocks for 3D fluidic assembly

  • Michael Kalontarov
  • Michael T. Tolley
  • Hod Lipson
  • David Erickson
Research Paper

DOI: 10.1007/s10404-010-0572-9

Cite this article as:
Kalontarov, M., Tolley, M.T., Lipson, H. et al. Microfluid Nanofluid (2010) 9: 551. doi:10.1007/s10404-010-0572-9

Abstract

In this work we develop a method for fluid dynamically driven assembly in three dimensions and demonstrate its applicability to the development of programmable matter. Towards this end, we investigate docking of a single block onto a larger structure using detailed numerical simulations and experiments. Our simulation results show that a block whose degrees of freedom are limited is able to align parallel with the docking site, a necessary condition for successful assembly, whereas an unconfined block could not. Experiments with blocks that were designed with this approach confirmed alignment parallel with the docking site in 97% of trials. To generate alignment in the other two planes, we designed blocks that self-align due to geometric interactions. We also introduced a pulsating flow to increase the probability of aligned assembly. Using this strategy, a 54% successful (fully aligned) assembly rate was achieved.

Keywords

Programmable matterSelf-assemblyMicrofluidicsReconfigurable systems

Supplementary material

View video
Online Resource 1

Block attraction, alignment, and rejection. A block is attracted to the pedestal. The block is aligned by pulsations of the sink flow and attaches on to the structure. The block can be rejected by the reversing the flow through the sink. Supplementary material 1 (MPG 2320 kb)

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michael Kalontarov
    • 1
  • Michael T. Tolley
    • 1
  • Hod Lipson
    • 1
  • David Erickson
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNew York