Skip to main content

Advertisement

Log in

Impact of Anthropogenic Disturbance on Native and Invasive Trypanosomes of Rodents in Forested Uganda

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Habitat disturbance and anthropogenic change are globally associated with extinctions and invasive species introductions. Less understood is the impact of environmental change on the parasites harbored by endangered, extinct, and introduced species. To improve our understanding of the impacts of anthropogenic disturbance on such host–parasite interactions, we investigated an invasive trypanosome (Trypanosoma lewisi). We screened 348 individual small mammals, representing 26 species, from both forested and non-forested habitats in rural Uganda. Using microscopy and PCR, we identified 18% of individuals (order Rodentia) as positive for trypanosomes. Further phylogenetic analyses revealed two trypanosomes circulating—T. lewisi and T. varani. T. lewisi was found in seven species both native and invasive, while T. varani was identified in only three native forest species. The lack of T. varani in non-forested habitats suggests that it is a natural parasite of forest-dwelling rodents. Our findings suggest that anthropogenic disturbance may lead to spillover of an invasive parasite (T. lewisi) from non-native to native species, and lead to local co-extinction of a native parasite (T. varani) and native forest-dwelling hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

R eferences

  • Adams ER, Hamilton PB, Gibson WC (2010) African trypanosomes: celebrating diversity. Trends in Parasitology 26:324–328

    Article  PubMed  Google Scholar 

  • Altizer S, Nunn CL, Lindenfors P (2007) Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology 76:304–314

    Article  PubMed  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Averis S, Thompson RCA, Lymbery AJ, Wayne AF, Morris KD, Smith A (2009) The diversity, distribution and host–parasite associations of trypanosomes in Western Australian wildlife. Parasitology 136:1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Bush SE, Reed M, Maher S (2013) Impact of forest size on parasite biodiversity: implications for conservation of hosts and parasites. Biodiversity and Conservation 22:1391–1404

    Article  Google Scholar 

  • Carleton MD, Musser GG (2005) Order Rodentia. In: Mammal Species of the World: A Taxonomic and Geographic Reference, Wilson DE, Reeder DM (editors), Baltimore, MD: Johns Hopkins University Press, pp 745–752

    Google Scholar 

  • Chapman CA, Balcomb SR, Gillespie TR, Skorupa JP, Struhsaker TT (2000) Long-term effects of logging on African primate communities: a 28-year comparison from Kibale National Park, Uganda. Conservation Biology 14:207–217

    Article  Google Scholar 

  • Chasar A, Loiseau UC, Valkiunas G, Iezhova T, Smith TB, Sehgal RNM (2009) Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Molecular Ecology 18:4121–4133

    Article  CAS  PubMed  Google Scholar 

  • Cottontail VM, Kalko EKV, Cottontail I, Wellinghausen N, Tschapka M, Perkins SL, et al. (2014) High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS One 9:e108603

    Article  PubMed  PubMed Central  Google Scholar 

  • Delany MJ (1975) The Rodents of Uganda, London, UK: Trustees of the British Museum (Natural History)

    Google Scholar 

  • Dobigny G, Poirier P, Hima K, Cabaret O, Gauthier P, Tatard C, et al. (2011) Molecular survey of rodent-borne Trypanosoma in Niger with special emphasis on T. lewisi imported by invasive black rats. Acta Tropica 117:183–188

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences of USA 105:11482–11489

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, et al. (2010) Geneious v5.5. Available: http://www.geneious.com

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: Are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences 276:3037–3045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM, Martinez ND, et al. (2013) Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biology 11:e1001579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie TR, Chapman CA (2006) Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology 20:441–448

    Article  PubMed  Google Scholar 

  • Hamilton PB, Gibson WC, Stevens JR (2007) Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular Phylogenetics and Evolution 44:15–25

    Article  CAS  PubMed  Google Scholar 

  • Hartter J (2009) Attitudes of rural communities toward wetlands and forest fragments around Kibale National Park, Uganda. Human Dimensions of Wildlife 14:433–447

    Article  Google Scholar 

  • Hoare CA (1972) The Trypanosomas of Mammals, Oxford, UK: Blackwell Scientific Publications

    Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecology Letters 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species coextinctions and the biodiversity crisis. Science 305:1632–1634

    Article  CAS  PubMed  Google Scholar 

  • May RM, Anderson RM (1991) Infectious Diseases of Humans: Dynamics and Control, Oxford, UK: Oxford University Press.

    Google Scholar 

  • McCauley DJ, Salkeld DJ, Young HS, Makundi R, Dirzo R, Eckerlin RP, Lambin EF, Gaffikin L, Barry M, Helgen KM (2015) Effects of land use on plague (Yersinia pestis) activity in rodents in Tanzania. American Journal of Tropical Medicine and Hygiene 92:776–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills JN, Yates TL, Ksiazek TG, Peters CJ, Childs JE (1999) Long-term studies of hantavirus reservoir populations in the southwestern United States: rationale, potential, and methods. Emerging Infectious Diseases 5:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milocco C, Kamyingkird K, Desquesnes M, Jittapalapong S, Herbreteau V, Chaval Y, et al. (2013) Molecular demonstration of Trypanosoma evansi and Trypanosoma lewisi DNA in wild rodents from Cambodia, Lao PDR and Thailand. Transboundary and Emerging Diseases 60:17–26

    Article  CAS  PubMed  Google Scholar 

  • Molyneux DH (1969) Intracellular stages of Trypanosoma lewisi in fleas and attempts to find such stages in other trypanosome species. Parasitology 59:669–674

    Article  Google Scholar 

  • Noyes HA, Ambrose P, Barker F, Begon M, Bennet M, Bown KJ, et al. (2002) Host specificity of Trypanosoma (Herpetosoma) species: evidence that bank voles (Clethrionomys glareolus) carry only one T. (H.) evotomys 18S rRNA genotype but wood mice (Apodemus sylvaticus) carry at least two polyphyletic parasites. Parasitology 124:185–190

    CAS  PubMed  Google Scholar 

  • Pedersen AB, Jones KE, Nunn CL, Altizer S (2007) Infectious diseases and extinction risk in wild mammals. Conservation Biology 21:1269–1279

    Article  PubMed  Google Scholar 

  • Peppers LL, Carroll DS, Bradley RD (2002). Molecular systematics of the genus Sigmodon (Rodentia: Muridae): evidence from the mitochondrial cytochrome-b gene. Journal of Mammalogy 83:396–407

    Article  Google Scholar 

  • Pinto CM, Ocana-Mayorga S, Lascano MS, Grijalva MJ (2006) Infection by trypanosomes in marsupials and rodents associated with human dwellings in Ecuador. Journal of Parasitology 92:1251–1255

    Article  PubMed  Google Scholar 

  • Pinto CM, Kalko EK, Cottontail I, Wellinghausen N, Cottontail VM (2012) TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification. Infection, Genetics and Evolution 12:1328–1332

    Article  CAS  PubMed  Google Scholar 

  • Pumhom P, Pognon D, Yangtara S, Thaprathorn N, Milocco C, Douangboupha B, et al. (2014) Molecular prevalence of Trypanosoma spp. in wild rodents of Southeast Asia: influence of human settlement habitat. Epidemiology and Infection 142:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139:847–863

    Article  CAS  PubMed  Google Scholar 

  • Salkeld DJ, Padgett KA, Jones JH (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecology Letters 16:679–686

    Article  PubMed  Google Scholar 

  • Salzer JS, Carroll DS, Williams-Newkirk AJ, Lang S, Peterhans JK, Rwego IB, et al. (2015) Effects of anthropogenic and demographic factors on patterns of parasitism in African small mammal communities. Parasitology 142:512–522

    Article  PubMed  Google Scholar 

  • Sato H, Ishita K, Matsuo K, Inaba T, Kamiya H, Ito M (2003) Persistent infection of Mongolian jirds with a non-pathogenic trypanosome, Trypanosoma (Herpetosoma) grosi. Parasitology 127:357–363

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takano A, Kawabata H, Une Y, Watanabe H, Mukhtar MM (2009) Trypanosoma cf. varani in an imported ball python (Python reginus) from Ghana. Journal of Parasitology 95:1029–1033

    Article  PubMed  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic. Concurrency and Computation: Practice and Experience 17:1705–1723

    Article  Google Scholar 

  • Struhsaker TT (1997) Ecology of an African Rain Forest: Logging in Kibale and the Conflict Between Conservation and Exploitation, Gainesville, FL: University of Florida Press

    Google Scholar 

  • Truc P, Büscher P, Cuny G, Gonzatti MI, Jannin J, Joshi P, et al. (2013) Atypical human infections by animal trypanosomes. PLoS Neglected Tropical Diseases 7:e2256

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma A, Manchanda S, Kumar N, Sharma A, Goel M, Banerjee PS, et al. (2011) Case report: Trypanosoma lewisi or T. lewisi-like infection in a 37-day-old Indian infant. American Journal of Tropical Medicine and Hygiene 85:221–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Verneau O, Palacios C, Platt T, Alday M, Billard E, Allienne JF, et al. (2011) Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles. Parasitology 138:1778–1792

    Article  CAS  PubMed  Google Scholar 

  • Wanyonyi MG, Ng’wena AGM, Ngeiywa MM (2011) Prevalence of Trypanosoma and Plasmodium species’ parasites in small rodents of Kakamega Forest in western Kenya. African Journal of Health Sciences 19:61–67

    Google Scholar 

  • Wenyon CM (1908) Report of the travelling pathologist and protozoologist. In: Third Report of the Wellcome Research Laboratories of the Gordon Memorial College, Balfour KAB (editor), London, UK: Tindall, Cox, pp 121–168

  • Wyatt KB, Campos PF, Gilbert MTP, Kolokotronis S-O, Hynes WH, DeSalle R, et al. (2008) Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS One 3:e3602

    Article  PubMed  PubMed Central  Google Scholar 

  • Young H, Griffin RH, Wood CL, Nunn CL (2013) Does habitat disturbance increase infectious disease risk for primates? Ecology Letters 16:656–663

    Article  PubMed  Google Scholar 

  • Young HS, Dirzo R, Helgen KM, McCauley DJ, Billeter SA, Kosoy MY, et al. (2014) Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proceedings of the National Academy of Sciences of USA 111:7036–7041

    Article  CAS  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

A cknowledgments

This research was supported in part by the Emory Global Health Institute, Emory University Environmental Science Department, and the appointment of J.S.S. to the Research Participation Program administered by Oak Ridge Institute for Science and Education (ORISE) through an Interagency Agreement with CDC. The authors thank the Uganda Wildlife Authority, Uganda National Council for Science and Technology, Makerere University Biological Field Station and local authorities for permission to conduct this study. The authors are thankful to J. de Roode for his encouragement and interests in investigating blood-borne pathogens. The authors thank S. Ockers, C. Akora, and I. Mwesige who provided valuable assistance in the field and K. Cross for assistance in the laboratory. The authors also thank S. L. Perkins, J. N. Mills, I. K. Damon, W. Stanley, U. Kitron, R. R. Lash, and S. P. Montgomery for helpful comments, logistical, and/or analytical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Gillespie.

Additional information

The views expressed in this paper are solely those of the authors and do not represent those of the CDC, US Government, or any other entity which the authors may be affiliates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salzer, J.S., Pinto, C.M., Grippi, D.C. et al. Impact of Anthropogenic Disturbance on Native and Invasive Trypanosomes of Rodents in Forested Uganda. EcoHealth 13, 698–707 (2016). https://doi.org/10.1007/s10393-016-1160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-016-1160-6

Keywords

Navigation