Skip to main content

Advertisement

Log in

In vivo imaging of a cone mosaic in a patient with achromatopsia associated with a GNAT2 variant

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The 2 most common causative genes for achromatopsia (ACHM) are CNGA3 and CNGB3; other genes including GNAT2 account for only a small portion of ACHM cases. The cone mosaics in eyes with CNGA3 and CNGB3 variants are severely disrupted; the cone mosaics in patients with GNAT2-associated ACHM; however, have been reported to show a contiguous pattern in adaptive optics (AO) retinal images. The purpose of this study was to analyze the cone mosaic of another case of GNAT2-associated ACHM.

Patient and methods

The patient was a 17-year-old Japanese boy. Comprehensive ocular examinations including fundus photography, electroretinography (ERGs), optical coherence tomography (OCT), and whole-exome analysis were performed. The cone mosaic was recorded with a flood-illuminated AO fundus camera, and the cone density was compared with those of 10 normal control eyes.

Results

The patient had the typical phenotype of ACHM, and a novel homozygous variant, c.730_743del, in GNAT2 was identified. The fundus did not show any specific abnormalities, and the OCT images showed the presence of the ellipsoid zone. The AO fundus image showed a clearly defined cone mosaic around the fovea. The cone density at 500 μm from the fovea was reduced by 15–30 % as compared with those of the normal eyes.

Conclusions

This is the first description of a Japanese patient with ACHM with a novel GNAT2 variant. The eyes of this patient had a preserved cone structure with loss of function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michaelides M, Aligianis IA, Holder GE, Simunovic MP, Mollon JD, Maher ER, et al. Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the alpha-subunit of cone specific transducin (GNAT2). Br J Ophthalmol. 2003;87:1317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreasson S, Tornqvist K. Electroretinograms in patients with achromatopsia. Acta Ophthalmol. 1991;69:711–6.

    Article  CAS  Google Scholar 

  3. Sundin OH, Yang JM, Li YY, Zhu DP, Hurd JN, Mitchell TN, et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet. 2000;25:289–93.

    Article  CAS  PubMed  Google Scholar 

  4. Wissinger B, Jagle H, Kohl S, Broghammer M, Baumann B, Hanna DB, et al. Human rod monochromacy: linkage analysis and mapping of a cone photoreceptor expressed candidate gene on chromosome 2q11. Genomics. 1998;51:325–31.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson S, Michaelides M, Aligianis IA, Ainsworth JR, Mollon JD, Maher ER, et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet. 2004;41:e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jagle H, et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet. 2005;13:302–8.

    Article  CAS  PubMed  Google Scholar 

  7. Saqib MA, Awan BM, Sarfraz M, Khan MN, Rashid S, Ansar M. Genetic analysis of four Pakistani families with achromatopsia and a novel S4 motif mutation of CNGA3. Jpn J Ophthalmol. 2011;55:676–80.

    Article  PubMed  Google Scholar 

  8. Kuniyoshi K, Muraki-Oda S, Ueyama H, Toyoda F, Sakuramoto H, Ogita H, et al. Novel mutations in the gene for alpha-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia. Jpn J Ophthalmol. 2016;60:187–97.

    Article  CAS  PubMed  Google Scholar 

  9. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadala M, et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet. 2002;71:422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kohl S, Coppieters F, Meire F, Schaich S, Roosing S, Brennenstuhl C, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. Am J Hum Genet. 2012;91:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thiadens AAHJ, Somervuo V, van den Born LI, Roosing S, van Schooneveld MJ, Kuijpers RWAM, et al. Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:5952–7.

    Article  PubMed  Google Scholar 

  12. Thomas MG, Kumar A, Kohl S, Proudlock FA, Gottlob I. High-resolution in vivo imaging in achromatopsia. Ophthalmology. 2011;118:882–7.

    Article  PubMed  Google Scholar 

  13. Sundaram V, Wilde C, Aboshiha J, Cowing J, Han C, Langlo CS, et al. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology. 2014;121:234–45.

    Article  PubMed  Google Scholar 

  14. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397:520–2.

    Article  CAS  PubMed  Google Scholar 

  15. Kitaguchi Y, Bessho K, Yamaguchi T, Nakazawa N, Mihashi T, Fujikado T. In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera. Jpn J Ophthalmol. 2007;51:456–61.

    Article  PubMed  Google Scholar 

  16. Bessho K, Fujikado T, Mihashi T, Yamaguchi T, Nakazawa N, et al. Photoreceptor images of normal eyes and of eyes with macular dystrophy obtained in vivo with an adaptive optics fundus camera. Jpn J Ophthalmol. 2008;52:380–5.

    Article  PubMed  Google Scholar 

  17. Carroll J, Choi SS, Williams DR. In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vis Res. 2008;48:2564–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, et al. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014;55:4244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dubis AM, Cooper RF, Aboshiha J, Langlo CS, Sundaram V, Liu B, et al. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci. 2014;55:7303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.

    Article  PubMed  Google Scholar 

  21. Nakanishi A, Ueno S, Kawano K, Ito Y, Kominami T, Yasuda S, et al. Pathologic changes of cone photoreceptors in eyes with occult macular dystrophy. Invest Ophthalmol Vis Sci. 2015;56:7243–9.

    Article  PubMed  Google Scholar 

  22. Ueno S, Kawano K, Ito Y, Ra E, Nakanishi A, Nagaya M, et al. Near-infrared reflectance imaging in eyes with acute zonal occult outer retinopathy. Retina. 2015;35:1521–30.

    Article  PubMed  Google Scholar 

  23. Katagiri S, Yoshitake K, Akahori M, Hayashi T, Furuno M, Nishino J, et al. Whole-exome sequencing identifies a novel ALMS1 mutation (p. Q2051X) in two Japanese brothers with Alstrom syndrome. Mol Vis. 2013;19:2393–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292:497–523.

    Article  CAS  PubMed  Google Scholar 

  25. Lombardo M, Serrao S, Ducoli P, Lombardo G. Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults. J Cataract Refract Surg. 2012;38:1147–55.

    Article  PubMed  Google Scholar 

  26. Rosenberg T, Baumann B, Kohl S, Zrenner E, Jorgensen AL, Wissinger B. Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene mutations. Invest Ophthalmol Vis Sci. 2004;45:4256–62.

    Article  PubMed  Google Scholar 

  27. Ouechtati F, Merdassi A, Bouyacoub Y, Largueche L, Derouiche K, Ouragini H, et al. Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene. J Hum Genet. 2011;56:22–8.

    Article  PubMed  Google Scholar 

  28. Hasegawa T, Ueda T, Okamoto M, Ogata N. Presence of foveal bulge in optical coherence tomographic images in eyes with macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2014;157:390–6.

    Article  PubMed  Google Scholar 

  29. Bidaut Garnier M, Flores M, Debellemaniere G, Puyraveau M, Tumahai P, Meillat M, et al. Reliability of cone counts using an adaptive optics retinal camera. Clin Exp Ophthalmol. 2014;42:833–40.

    Article  PubMed  Google Scholar 

  30. Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci USA. 1999;96:7553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Michalakis S, Geiger H, Haverkamp S, Hofmann F, Gerstner A, Biel M. Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. Invest Ophthalmol Vis Sci. 2005;46:1516–24.

    Article  PubMed  Google Scholar 

  32. Chang B, Dacey MS, Hawes NL, Hitchcock PF, Milam AH, Atmaca-Sonmez P, et al. Cone photoreceptor function loss-3: a novel mouse model of achromatopsia due to a mutation in Gnat2. Invest Ophthalmol Vis Sci. 2006;47:5017–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Duco Hamasaki of the Bascom Palmer Eye Institute for discussions and for editing the final version of the manuscript. This work was supported in part by a Scientific Research C Grant (25462709 SU) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Ueno.

Ethics declarations

Conflicts of interest

S. Ueno, Grants (Santen), Lecture fees (Novartis, Pfizer); A. Nakanishi, None; T. Kominami, None; Y. Ito, Lecture fees (Aichi Ophthalmologists Association, Alcon, Bayer Health Care, Canon Life Care Solutions, Carl Zeiss Meditec, Kowa, Nidek, Novartis, Okazaki City Medical Association, Pfizer, Santen); T. Hayashi, None; K. Yoshitake, None; Y. Kawamura, None; K. Tsunoda, None; T. Iwata, None; H. Terasaki, Grants (Canon, Nidek), Lecture fees (Carl Zeiss Meditec, Nidek).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, S., Nakanishi, A., Kominami, T. et al. In vivo imaging of a cone mosaic in a patient with achromatopsia associated with a GNAT2 variant. Jpn J Ophthalmol 61, 92–98 (2017). https://doi.org/10.1007/s10384-016-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0484-7

Keywords

Navigation