Skip to main content

Advertisement

Log in

Vitreous anatomy and the vitreomacular correlation

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

The presence of a posterior precortical vitreous pocket, referred to as a precortical pocket, implies that the vitreous cortex is formed into a collagen sheet separated from the gel in the macula. Along with strong vitreoretinal attachment at the fovea, the precortical pocket plays a role in perifoveal posterior vitreous detachments, which may lead to macular holes, premacular membranes, and ring-shaped proliferation in diabetic retinopathy. I and my colleagues published pioneer studies of the vitreous in postmortem eyes. Here, the role of the precortical pocket in various vitreoretinal interface diseases is discussed. Swept-source optical coherence tomography showed development of the precortical pocket, the connecting channel, and Cloquet’s canal during early childhood. These findings raised the possibility that aqueous humor may drain into the precortical pocket. The physiologic role of the drainage route is also discussed. Crosstalk between the anterior chamber and macula is an attractive hypothesis and remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48

Similar content being viewed by others

References

  1. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19:323–44.

    Article  CAS  PubMed  Google Scholar 

  2. Eisner G. Gross anatomy of the vitreous body. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;193:33–56.

    Article  CAS  PubMed  Google Scholar 

  3. Worst JG. Cisternal systems of the fully developed vitreous body in the young adult. Trans Ophthalmol Soc UK. 1977;97:550–4.

    CAS  PubMed  Google Scholar 

  4. Worst J. Extracapsular surgery in lens implantation (Binkhorst lecture). Part IV. Some anatomical and pathophysiological implications. J Am Intraocul Implant Soc. 1978;4:7–14.

    Article  CAS  PubMed  Google Scholar 

  5. Jongebloed WL, Worst JF. The cisternal anatomy of the vitreous body. Doc Ophthalmol. 1987;67:183–96.

    Article  CAS  PubMed  Google Scholar 

  6. Sebag J, Balazs EA. Human vitreous fibres and vitreoretinal disease. Trans Ophthalmol Soc UK. 1985;104:123–8.

    PubMed  Google Scholar 

  7. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225:89–93.

    Article  CAS  PubMed  Google Scholar 

  8. Kishi S, Demaria C, Shimizu K. Vitreous cortex remnants at the fovea after spontaneous vitreous detachment. Int Ophthalmol. 1986;9:253–60.

    Article  CAS  PubMed  Google Scholar 

  9. Kishi S, Shimizu K. Posterior precortical vitreous pocket. Arch Ophthalmol. 1990;108:979–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kishi S, Shimizu K. Clinical manifestations of posterior precortical vitreous pocket in proliferative diabetic retinopathy. Ophthalmology. 1993;100:225–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1994;118:451–6.

    Article  CAS  PubMed  Google Scholar 

  12. Kishi S, Hagimura N, Shimizu K. The role of the premacular liquefied pocket and premacular vitreous cortex in idiopathic macular hole development. Am J Ophthalmol. 1996;122:622–8.

    Article  CAS  PubMed  Google Scholar 

  13. Itakura H, Kishi S. Aging changes of vitreomacular interface. Retina. 2011;31:1400–4.

    Article  PubMed  Google Scholar 

  14. Shimada H, Hirose T, Yamamoto A, Nakashizuka H, Hattori T, Yuzawa M. Depiction of the vitreous pocket by optical coherence tomography. Int Ophthalmol. 2011;31:51–3.

    Article  PubMed  Google Scholar 

  15. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:3102–7.

    Article  PubMed  Google Scholar 

  16. Schaal KB, Pang CE, Pozzoni MC, Engelbert M. The premacular bursa’s shape revealed in vivo by swept-source optical coherence tomography. Ophthalmology. 2014;121:1020–8.

    Article  PubMed  Google Scholar 

  17. Yokoi T, Toriyama N, Yamane T, Nakayama Y, Nishina S, Azuma N. Development of a premacular vitreous pocket. JAMA Ophthalmol. 2013;131:1095–6.

    Article  PubMed  Google Scholar 

  18. Li D, Kishi S, Itakura H, Ikeda F, Akiyama H. Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:2412–6.

    Article  PubMed  Google Scholar 

  19. Gabelt BT, Kaufman PL. Production and flow of aqueous humor. In: Wu SM, Kaufman PL, Alm A, editors. Levin LA, Nilsson SFE, Ver Hoeve J. 11th ed. Elsevier: Adler’s physiology of the eye. Philadelphia; 2011. p. 274–307.

    Google Scholar 

  20. Gass JD, Norton EW. Cystoid macular edema and papilledema following cataract extraction. A fluorescein fundoscopic and angiographic study. Arch Ophthalmol. 1966;76:646–61.

    Article  CAS  PubMed  Google Scholar 

  21. Irvine AR, Bresky R, Crowder BM, Forster RK, Hunter DM, Kulvin SM. Macular edema after cataract extraction. Ann Ophthalmol. 1971;3:1234–5.

    CAS  PubMed  Google Scholar 

  22. Miyake K, Ota I, Maekubo K, Ichihashi S, Miyake S. Latanoprost accelerates disruption of the blood-aqueous barrier and the incidence of angiographic cystoid macular edema in early postoperative pseudophakias. Arch Ophthalmol. 1999;117:34–40.

    Article  CAS  PubMed  Google Scholar 

  23. Sakamoto T, Miyazaki M, Hisatomi T, Nakamura T, Ueno A, Itaya K, et al. Triamcinolone-assisted pars plana vitrectomy improves the surgical procedures and decreases the postoperative blood-ocular barrier breakdown. Graefes Arch Clin Exp Ophthalmol. 2002;240:423–9.

    Article  PubMed  Google Scholar 

  24. Fine HF, Spaide RF. Visualization of the posterior precortical vitreous pocket in vivo with triamcinolone. Arch Ophthalmol. 2006;124:1663.

    Article  PubMed  Google Scholar 

  25. Shimada H, Nakashizuka H, Hattori T, Mori R, Mizutani Y, Yuzawa M. Three-dimensional depiction of the vitreous pocket using triamcinolone acetonide. Eur J Ophthalmol. 2009;19:1102–5.

    PubMed  Google Scholar 

  26. Sakamoto T, Ishibashi T. Visualizing vitreous in vitrectomy by triamcinolone. Graefes Arch Clin Exp Ophthalmol. 2009;247:1153–63.

    Article  CAS  PubMed  Google Scholar 

  27. Otani T, Kishi S. Surgically induced posterior vitreous detachment by tearing the premacular vitreous cortex. Retina. 2009;29:1193–4.

    Article  PubMed  Google Scholar 

  28. Sato T, Kishi S, Otani T, Hashimoto H, Watanabe G. Modified technique for inducing posterior vitreous detachment through the posterior precortical vitreous pocket during microincision vitreous surgery with a wide-angle viewing system. Ophthalmologica. 2013;230:76–80.

    Article  PubMed  Google Scholar 

  29. Itakura H, Kishi S. Alterations of posterior precortical vitreous pockets with positional changes. Retina. 2013;33:1417–20.

    Article  PubMed  Google Scholar 

  30. Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:2898–900.

    Article  PubMed  Google Scholar 

  31. Eisner G. Biomicroscopy of the peripheral fundus. New York: Springer; 1979. p. 20, 21, 106–7.

    Google Scholar 

  32. Worst JG, Los LI. Cisternal anatomy of the vitreous. Amsterdam: Kugler; 1995. p. 9–31.

    Google Scholar 

  33. Sebag J. Age-related differences in the human vitreoretinal interface. Arch Ophthalmol. 1991;109:966–71.

    Article  CAS  PubMed  Google Scholar 

  34. Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989;30:1867–71.

    CAS  PubMed  Google Scholar 

  35. Foos RY. Vitreoretinal juncture; topographical variations. Invest Ophthalmol. 1972;11:801–8.

    CAS  PubMed  Google Scholar 

  36. Spaide RF, Wong D, Fisher Y, Goldbaum M. Correlation of vitreous attachment and foveal deformation in early macular hole states. Am J Ophthalmol. 2002;133:226–9.

    Article  PubMed  Google Scholar 

  37. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–9.

    Article  PubMed  Google Scholar 

  38. Balazs EA, Denlinger J. Aging change in the vitreous. In: Sekuler R, Dismukes K, Kline D, National Research Council (U.S.). Committee on Vision, editors. Aging and human visual function. New York: Alan R. Liss; 1982. p. 45–7.

    Google Scholar 

  39. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89:1502–12.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149:371–82.

    Article  PubMed  Google Scholar 

  41. Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001;119:1475–9.

    Article  CAS  PubMed  Google Scholar 

  42. Itakura H, Kishi S. Evolution of vitreomacular detachment in healthy subjects. JAMA Ophthalmol. 2013;131:1348–52.

    Article  PubMed  Google Scholar 

  43. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA. Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc. 2007;105:121–9 discussion 129–31.

    PubMed  PubMed Central  Google Scholar 

  45. Sebag J, Niemeyer M, Koss JM. Anomalous posterior vitreous detachment and vitreoschisis. In: Sebag J, editor. Vitreous in health and disease. New York: Springer; 2014. p. 251–3.

    Google Scholar 

  46. Itakura H, Kishi S. Vitreous cortex splitting in cases of vitreomacular traction syndrome. Ophthal Surg Lasers Imaging. 2012;43(Online):e27–9.

    Google Scholar 

  47. Yamashita T, Uemura A, Sakamoto T. Intraoperative characteristics of the posterior vitreous cortex in patients with epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2008;246:333–7.

    Article  PubMed  Google Scholar 

  48. Johnson MW. Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc. 2005;103:537–67.

    PubMed  PubMed Central  Google Scholar 

  49. Avila MP, Jalkh AE, Murakami K, Trempe CL, Schepens CL. Biomicroscopic study of the vitreous in macular breaks. Ophthalmology. 1983;90:1277–83.

    Article  CAS  PubMed  Google Scholar 

  50. Gass JD. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol. 1988;106:629–39.

    Article  CAS  PubMed  Google Scholar 

  51. Kishi S, Kamei Y, Shimizu K. Tractional elevation of Henle’s fiber layer in idiopathic macular holes. Am J Ophthalmol. 1995;120:486–96.

    Article  CAS  PubMed  Google Scholar 

  52. Johnson MW, Van Newkirk MR, Meyer KA. Perifoveal vitreous detachment is the primary pathogenic event in idiopathic macular hole formation. Arch Ophthalmol. 2001;119:215–22.

    CAS  PubMed  Google Scholar 

  53. Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol. 1999;117:744–51.

    Article  CAS  PubMed  Google Scholar 

  54. Kishi S, Takahashi H. Three-dimensional observations of developing macular holes. Am J Ophthalmol. 2000;130:65–75.

    Article  CAS  PubMed  Google Scholar 

  55. Haouchine B, Massin P, Gaudric A. Foveal pseudocyst as the first step in macular hole formation. Ophthalmology. 2001;108:15–22.

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi A, Yoshida A, Nagaoka T, Kagokawa H, Kato Y, Takamiya A, et al. Macular hole formation in fellow eyes with a perifoveal posterior vitreous detachment of patients with a unilateral macular hole. Am J Ophthalmol. 2011;151:981–9.

    Article  PubMed  Google Scholar 

  57. Takahashi A, Yoshida A, Nagaoka T, Takamiya A, Sato E, Kagokawa H, et al. Idiopathic full-thickness macular holes and the vitreomacular interface: a high-resolution spectral-domain optical coherence tomography study. Am J Ophthalmol. 2012;154:881–92.

    Article  PubMed  Google Scholar 

  58. Mori K, Gehlbach PL, Kishi S. Posterior vitreous mobility delineated by tracking of optical coherence tomography images in eyes with idiopathic macular holes. Am J Ophthalmol. 2015;159:1132–41.

    Article  PubMed  Google Scholar 

  59. Akiba J, Yoshida A, Trempe CL. Risk of developing a macular hole. Arch Ophthalmol. 1990;108:1088–90.

    Article  CAS  PubMed  Google Scholar 

  60. Kakehashi A, Schepens CL, Akiba J, Hikichi T, Trempe CL. Spontaneous resolution of foveal detachments and macular breaks. Am J Ophthalmol. 1995;120:767–75.

    Article  CAS  PubMed  Google Scholar 

  61. Ebato K, Kishi S. Spontaneous closure of macular hole after posterior vitreous detachment. Ophthalmic Surg Lasers. 2000;31:245–7.

    CAS  PubMed  Google Scholar 

  62. Hamano R, Shimoda Y, Kishi S. Tomographic features of spontaneous closure of full-thickness macular holes. Jpn J Ophthalmol. 2007;51:76–7.

    Article  PubMed  Google Scholar 

  63. Takahashi H, Kishi S. Tomographic features of a lamellar macular hole formation and a lamellar hole that progressed to a full thickness macular hole. Am J Ophthalmol. 2000;130:677–9.

    Article  CAS  PubMed  Google Scholar 

  64. Yamada N, Kishi S. Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol. 2005;139:112–7.

    Article  PubMed  Google Scholar 

  65. Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM Jr, Yannuzzi LA. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;145:509–17.

    Article  PubMed  Google Scholar 

  66. Wise GN. Clinical features of idiopathic preretinal macular fibrosis. Schoenberg Lecture. Am J Ophthalmol. 1975;79:349–57.

    Article  CAS  PubMed  Google Scholar 

  67. Appiah AP, Hirose T, Kado M. A review of 324 cases of idiopathic premacular gliosis. Am J Ophthalmol. 1988;106:533–5.

    Article  CAS  PubMed  Google Scholar 

  68. Sidd RJ, Fine SL, Owens SL, Patz A. Idiopathic preretinal gliosis. Am J Ophthalmol. 1982;94:44–8.

    Article  CAS  PubMed  Google Scholar 

  69. Hirokawa H, Jalkh AE, Takahashi M, Takahashi M, Trempe CL, Schepens CL. Role of the vitreous in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1986;101:166–9.

    Article  CAS  PubMed  Google Scholar 

  70. Heilskov TW, Massicotte SJ, Folk JC. Epiretinal macular membranes in eyes with attached posterior cortical vitreous. Retina. 1996;16:279–84.

    Article  CAS  PubMed  Google Scholar 

  71. Sumers KD, Jampol LM, Goldberg MF, Huamonte FU. Spontaneous separation of epiretinal membranes. Arch Ophthalmol. 1980;98:318–20.

    Article  CAS  PubMed  Google Scholar 

  72. Greven CM, Slusher MM, Weaver RG. Epiretinal membrane release and posterior vitreous detachment. Ophthalmology. 1988;95:902–5.

    Article  CAS  PubMed  Google Scholar 

  73. Matsumura M, Okada M, Shirakawa H, Ogino N. Histological classification of idiopathic epimacular membranes. Folia Ophthalmol Jpn. 1988;39:689–95.

    Google Scholar 

  74. Okada M, Ogino N, Matsumura M, Honda Y, Nagai Y. Histological and immunohistochemical study of idiopathic epiretinal membrane. Ophthalmic Res. 1995;27:118–28.

    Article  CAS  PubMed  Google Scholar 

  75. Kampik A, Green WR, Michels RG, Nase PK. Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol. 1980;90:797–809.

    Article  CAS  PubMed  Google Scholar 

  76. Kohno RI, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93:1020–6.

    Article  PubMed  Google Scholar 

  77. McMeel JW. Diabetic retinopathy: fibrotic proliferation and retinal detachment. Trans Am Ophthalmol Soc. 1971;69:440–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kishi S. Proliferative diabetic retinopathy. In: Optical coherence tomography in diagnosis of retinal disease, 2nd edition (in Japanese, translated by author). Tokyo: Elsevier Japan; 2010. p. 190.

  79. Kishi S. The vitreous and the macula. Nippon Ganka Gakkai Zasshi. 2015;119:117–44 (in Japanese).

    PubMed  Google Scholar 

  80. Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol. 1999;127:688–93.

    Article  CAS  PubMed  Google Scholar 

  81. Lewis H, Abrams GW, Blumenkranz MS, Campo RV. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology. 1992;99:753–9.

    Article  CAS  PubMed  Google Scholar 

  82. Tachi N, Ogino N. Vitrectomy for diffuse macular edema in cases of diabetic retinopathy. Am J Ophthalmol. 1996;122:258–60.

    Article  CAS  PubMed  Google Scholar 

  83. Gandorfer A, Messmer EM, Ulbig MW, Kampik A. Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane. Retina. 2000;20:126–33.

    Article  CAS  PubMed  Google Scholar 

  84. Kaiser PK, Riemann CD, Sears JE, Lewis H. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol. 2001;131:44–9.

    Article  CAS  PubMed  Google Scholar 

  85. Yamaguchi Y, Otani T, Kishi S. Resolution of diabetic cystoid macular edema associated with spontaneous vitreofoveal separation. Am J Ophthalmol. 2003;135:116–8.

    Article  PubMed  Google Scholar 

  86. Gaucher D, Tadayoni R, Erginay A, Haouchine B, Gaudric A, Massin P. Optical coherence tomography assessment of the vitreoretinal relationship in diabetic macular edema. Am J Ophthalmol. 2005;139:807–13.

    Article  PubMed  Google Scholar 

  87. Kishi S. Visualization of the vitreous using swept source optical coherence tomography (in Japanese, translated by author). Nihon no Ganka 2014;85:1394–8.

  88. Takano M, Kishi S. Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma. Am J Ophthalmol. 1999;128:472–6.

    Article  CAS  PubMed  Google Scholar 

  89. Baba T, Ohno-Matsui K, Futagami S, Yoshida T, Yasuzumi K, Kojima A, et al. Prevalence and characteristics of foveal retinal detachment without macular hole in high myopia. Am J Ophthalmol. 2003;135:338–42.

    Article  PubMed  Google Scholar 

  90. Kobayashi H, Kishi S. Vitreous surgery for highly myopic eyes with foveal detachment and retinoschisis. Ophthalmology. 2003;110:1702–7.

    Article  PubMed  Google Scholar 

  91. Kanda S, Uemura A, Sakamoto Y, Kita H. Vitrectomy with internal limiting membrane peeling for macular retinoschisis and retinal detachment without macular hole in highly myopic eyes. Am J Ophthalmol. 2003;136:177–80.

    Article  PubMed  Google Scholar 

  92. Ikuno Y, Sayanagi K, Ohji M, Kamei M, Gomi F, Harino S, et al. Vitrectomy and internal limiting membrane peeling for myopic foveoschisis. Am J Ophthalmol. 2004;137:719–24.

    PubMed  Google Scholar 

  93. Ikuno Y, Gomi F, Tano Y. Potent retinal arteriolar traction as a possible cause of myopic foveoschisis. Am J Ophthalmol. 2005;139:462–7.

    Article  PubMed  Google Scholar 

  94. Itakura H, Kishi S, Li D, Nitta K, Akiyama H. Vitreous changes in high myopia observed by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:1447–52.

    Article  PubMed  Google Scholar 

  95. Kishi S. Vitreous changes in myopia. In: Spaide RF, Ohno-Matsui K, Yannuzzi LA, editors. Pathologic Myopia. New York: Springer; 2013. p. 143–66.

    Google Scholar 

  96. Bito LZ, Wallenstein MC. Transport of prostaglandins across the blood-brain and blood-aqueous barriers and the physiological significance of these absorptive transport processes. Exp Eye Res. 1977;25(Suppl):229–43.

    Article  CAS  PubMed  Google Scholar 

  97. Miyake K, Ibaraki N. Prostaglandins and cystoid macular edema. Surv Ophthalmol. 2002;47(Suppl 1):S203–18.

    Article  PubMed  Google Scholar 

  98. Miyake K. Prevention of cystoid macular edema after lens extraction by topical indomethacin (I). A preliminary report. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977;203:81–8.

    Article  CAS  PubMed  Google Scholar 

  99. von Jagow B, Ohrloff C, Kohnen T. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2007;245:1765–71.

    Article  Google Scholar 

  100. Kolker AE, Becker B. Epinephrine maculopathy. Arch Ophthalmol. 1968;79:552–62.

    Article  CAS  PubMed  Google Scholar 

  101. Hesse RJ, Swan JL II. Aphakic cystoid macular edema secondary to betaxolol therapy. Ophthalmic Surg. 1988;19:562–4.

    CAS  PubMed  Google Scholar 

  102. Miyake K, Ota I, Ibaraki N, Akura J, Ichihashi S, Shibuya Y, et al. Enhanced disruption of the blood-aqueous barrier and the incidence of angiographic cystoid macular edema by topical timolol and its preservative in early postoperative pseudophakia. Arch Ophthalmol. 2001;119:387–94.

    Article  CAS  PubMed  Google Scholar 

  103. Moroi SE, Gottfredsdottir MS, Schteingart MT, Elner SG, Lee CM, Schertzer RM, et al. Cystoid macular edema associated with latanoprost therapy in a case series of patients with glaucoma and ocular hypertension. Ophthalmology. 1999;106:1024–9.

    Article  CAS  PubMed  Google Scholar 

  104. Wong DC, Waxman MD, Herrinton LJ, Shorstein NH. Transient macular edema after intracameral injection of a moderately elevated dose of cefuroxime during phacoemulsification surgery. JAMA Ophthalmol. 2015;133:1194–7.

    Article  PubMed  Google Scholar 

  105. Tolentino FI, Schepens CL, Freeman HM. Vitreoretinal disorders. Diagnosis and management. Philadelphia: W.B. Saunders Co.; 1976. p. 121–2.

    Google Scholar 

  106. Tolentino FI, Schepens CL, Freeman HM. Vitreoretinal disorders. Diagnosis and management. Philadelphia: W.B. Saunders Co.; 1976. p. 109–16.

    Google Scholar 

  107. Wiegand RD, Giusto NM, Rapp LM, Anderson RE. Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci. 1983;24:1433–5.

    CAS  PubMed  Google Scholar 

  108. Nomura Y, Takahashi H, Tan X, Fujino Y, Kawashima H, Yanagi Y. Effect of posterior vitreous detachment on aqueous humor level of vascular endothelial growth factor in exudative age-related macular degeneration patients. Graefes Arch Clin Exp Ophthalmol. 2016;254:53–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Kishi.

Ethics declarations

Conflicts of interest

S. Kishi, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishi, S. Vitreous anatomy and the vitreomacular correlation. Jpn J Ophthalmol 60, 239–273 (2016). https://doi.org/10.1007/s10384-016-0447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0447-z

Keywords

Navigation